Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  The influence of deep convection on HCHO and H2O2 in the upper troposphere over Europe

Bozem, H., Pozzer, A., Harder, H., Martínez, M., Williams, J., Lelieveld, J., et al. (2017). The influence of deep convection on HCHO and H2O2 in the upper troposphere over Europe. Atmospheric Chemistry and Physics, 17(19), 11835-11848. doi:10.5194/acp-17-11835-2017.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Bozem, H.1, Autor           
Pozzer, A.1, Autor           
Harder, H.1, Autor           
Martínez, M.1, Autor           
Williams, J.1, Autor           
Lelieveld, J.1, Autor           
Fischer, H.1, Autor           
Affiliations:
1Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_1826285              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Deep convection is an efficient mechanism for vertical trace gas transport from the Earth's surface to the upper troposphere (UT). The convective redistribution of short-lived trace gases emitted at the surface typically results in a C-shaped profile. This redistribution mechanism can impact photochemical processes, e.g. ozone and radical production in the UT on a large scale due to the generally longer lifetimes of species like formaldehyde (HCHO) and hydrogen peroxide (H2O2), which are important HOx precursors (HOx = OH + HO2 radicals). Due to the solubility of HCHO and H2O2 their transport may be suppressed as they are efficiently removed by wet deposition. Here we present a case study of deep convection over Germany in the summer of 2007 within the framework of the HOOVER II project. Airborne in-situ measurements within the in- and outflow regions of an isolated thunderstorm provide a unique data set to study the influence of deep convection on the transport efficiency of soluble and insoluble trace gases. Comparing the in- and outflow indicates almost undiluted transport of insoluble trace gases from the boundary layer to the UT. The ratios of out/inflow of CO and CH4 are 0.94 ± 0.04 and 0.99 ± 0.01, respectively. For the soluble species HCHO and H2O2 these ratios are 0.55 ± 0.09 and 0.61 ± 0.08, respectively, indicating partial scavenging and washout. Chemical box model simulations show that post-convection secondary formation of HCHO and H2O2 cannot explain their enhancement in the UT. A plausible explanation, in particular for the enhancement of the highly soluble H2O2, is degassing from cloud droplets during freezing, which reduces the retention coefficient.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2017
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.5194/acp-17-11835-2017
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Atmospheric Chemistry and Physics
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Katlenburg-Lindau, Germany : European Geosciences Union
Seiten: - Band / Heft: 17 (19) Artikelnummer: - Start- / Endseite: 11835 - 11848 Identifikator: ISSN: 1680-7316
CoNE: https://pure.mpg.de/cone/journals/resource/111030403014016