Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Elastic modulus dependence on the specific adhesion of hydrogels

Wang, H., Jacobi, F., Waschke, J., Hartmann, L., Löwen, H., & Schmidt, S. (2017). Elastic modulus dependence on the specific adhesion of hydrogels. Advanced Functional Materials, 27(41): 1702040. doi:10.1002/adfm.201702040.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Wang, Hanqing1, Autor
Jacobi, Fawad1, Autor
Waschke, Johannes2, Autor           
Hartmann, Laura1, Autor
Löwen, Hartmut3, Autor
Schmidt, Stephan1, Autor
Affiliations:
1Institute for Organic and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Germany, ou_persistent22              
2Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society, ou_634549              
3Institute for Theoretical Physics II: Soft Matter, Heinrich Heine University Düsseldorf, Germany, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Biointerfaces; Biomimetic hydrogels; Cell adhesion; Glycocalyx; Soft colloidal probes
 Zusammenfassung: Mechanosensitivity in biology, e.g., cells responding to material stiffness, is important for the design of synthetic biomaterials. It is caused by protein receptors able to undergo conformational changes depending on mechanical stress during adhesion processes. Here the elastic modulus dependence of adhesive interactions is systematically quantified using ligand–receptor model systems that are generally not thought to be mechanosensitive: biotin–avidin, mannose–concanavalin A, and electrostatic interactions between carboxylic acids and polycationic surfaces. Interactions are measured by microgel sensors of different stiffness adhering to surfaces presenting a corresponding binding partner. Adhesion is generally decreased for softer microgels due to reduced density of binding partners. Density-normalized data show that low-affinity carbohydrate ligands exhibit reduced binding in softer networks, probably due to increased network conformational entropy. However, in case of stronger interactions with large interaction range (electrostatic) and large lifetime (biotin–avidin) density normalized adhesion is increased. This suggests compensation of entropic repulsion for softer networks probably due to their increased mechanical deformation upon microgel adhesion and enhanced cooperative binding. In essence, experiments indicate that soft interacting polymer materials exhibit entropic repulsion, which can be overcome by strongly interacting species in the network harnessing network flexibility in order to increase adhesion.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2017-07-062017-04-182017-09-042017-11-03
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1002/adfm.201702040
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : -
Grant ID : SCHM 2748/3‐1 ; LO 418/16
Förderprogramm : -
Förderorganisation : German Research Foundation (DFG)

Quelle 1

einblenden:
ausblenden:
Titel: Advanced Functional Materials
  Andere : Adv. Funct. Mater.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Weinheim : Wiley-VCH Verlag GmbH
Seiten: - Band / Heft: 27 (41) Artikelnummer: 1702040 Start- / Endseite: - Identifikator: ISSN: 1616-301X
CoNE: https://pure.mpg.de/cone/journals/resource/954925596563