Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Enhancement of superexchange pairing in the periodically driven Hubbard model

Coulthard, J. R., Clark, S. R., Al-Assam, S., Cavalleri, A., & Jaksch, D. (2017). Enhancement of superexchange pairing in the periodically driven Hubbard model. Physical Review B, 96(8), 085104. Retrieved from https://link.aps.org/doi/10.1103/PhysRevB.96.085104.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
PhysRevB.96.085104(1).pdf (Verlagsversion), 2MB
Name:
PhysRevB.96.085104(1).pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2017
Copyright Info:
© American Physical Society

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://doi.org/10.1103/PhysRevB.96.085104 (Verlagsversion)
Beschreibung:
-
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Coulthard, J. R.1, Autor
Clark, S. R.2, 3, Autor
Al-Assam, S.1, Autor
Cavalleri, A.1, 2, Autor           
Jaksch, D.1, 4, Autor
Affiliations:
1Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom, ou_persistent22              
2Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_1938293              
3Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom, ou_persistent22              
4Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore , ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Recent experiments performed on cuprates and alkali-doped fullerides have demonstrated that key signatures of superconductivity can be induced above the equilibrium critical temperature by optical modulation. These observations in disparate physical systems may indicate a general underlying mechanism. Multiple theories have been proposed, but these either consider specific features, such as competing instabilities, or focus on conventional BCS-type superconductivity. Here we show that periodic driving can enhance electron pairing in strongly correlated systems. Focusing on the strongly repulsive limit of the doped Hubbard model, we investigate in-gap, spatially inhomogeneous, on-site modulations. We demonstrate that such modulations substantially reduce electronic hopping, while simultaneously sustaining superexchange interactions and pair hopping via driving-induced virtual charge excitations. We calculate real-time dynamics for the one-dimensional case, starting from zero- and finite-temperature initial states, and we show that enhanced singlet-pair correlations emerge quickly and robustly in the out-of-equilibrium many-body state. Our results reveal a fundamental pairing mechanism that might underpin optically induced superconductivity in some strongly correlated quantum materials.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2017-05-252016-09-132017-08-012017-08-01
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : This research is funded by the European Research Council under the European Union's Seventh Framework Programme (FP7/2007–2013)/ERC Grant Agreement No. 319286 Q-MAC. S.A. and D.J. acknowledge support from the EPSRC Tensor Network Theory grant (EP/K038311/1).
Grant ID : 319286
Förderprogramm : Funding Programme 7 (FP7)
Förderorganisation : European Commission (EC)

Quelle 1

einblenden:
ausblenden:
Titel: Physical Review B
  Alternativer Titel : Phys. Rev. B
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: American Physical Society
Seiten: - Band / Heft: 96 (8) Artikelnummer: - Start- / Endseite: 085104 Identifikator: -