English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Comparative transcriptome analysis of oil palm flowers reveals an EAR-motifcontaining R2R3-MYB that modulates phenylpropene biosynthesis

Li, R., Reddy, V. A., Jin, J., Rajan, C., Wang, Q., Yue, G., et al. (2017). Comparative transcriptome analysis of oil palm flowers reveals an EAR-motifcontaining R2R3-MYB that modulates phenylpropene biosynthesis. BMC Plant Biology, 17: 219. doi:10.1186/s12870-017-1174-4.

Item is

Files

show Files
hide Files
:
ITB530.pdf (Publisher version), 5MB
Name:
ITB530.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
ITB530s1.zip (Supplementary material), 2MB
Name:
ITB530s1.zip
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/zip / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show
hide
Locator:
http://dx.doi.org/10.1186/s12870-017-1174-4 (Publisher version)
Description:
OA
OA-Status:

Creators

show
hide
 Creators:
Li, Ran1, Author           
Reddy, Vaishnavi Amarr, Author
Jin, Jingjing, Author
Rajan, Chakaravarthy, Author
Wang, Qian, Author
Yue, Genhua, Author
Lim, Chin Huat, Author
Chua, Nam-Hai, Author
Ye, Jian, Author
Sarojam, Rajani, Author
Affiliations:
1Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society, ou_24029              

Content

show
hide
Free keywords: -
 Abstract: Background: Oil palm is the most productive oil crop and the efficiency of pollination has a direct impact on the yield of oil. Pollination by wind can occur but maximal pollination is mediated by the weevil E. kamerunicus. These weevils complete their life cycle by feeding on male flowers. Attraction of weevils to oil palm flowers is due to the emission of methylchavicol by both male and female flowers. In search for male flowers, the weevils visit female flowers by accident due to methylchavicol fragrance and deposit pollen. Given the importance of methylchavicol emission on pollination, we performed comparative transcriptome analysis of oil palm flowers and leaves to identify candidate genes involved in methylchavicol production in flowers. Results: RNA sequencing (RNA-Seq) of male open flowers, female open flowers and leaves was performed using Illumina HiSeq 2000 platform. Analysis of the transcriptome data revealed that the transcripts of methylchavicol biosynthesis genes were strongly up-regulated whereas transcripts encoding genes involved in lignin production such as, caffeic acid O-methyltransferase (COMT) and Ferulate-5-hydroxylase (F5H) were found to be suppressed in oil palm flowers. Among the transcripts encoding transcription factors, an EAR-motif-containing R2R3-MYB transcription factor (EgMYB4) was found to be enriched in oil palm flowers. We determined that EgMYB4 can suppress the expression of a monolignol pathway gene, EgCOMT, in vivo by binding to the AC elements present in the promoter region. EgMYB4 was further functionally characterized in sweet basil which also produces phenylpropenes like oil palm. Transgenic sweet basil plants showed significant reduction in lignin content but produced more phenylpropenes. Conclusions: Our results suggest that EgMYB4 possibly restrains lignin biosynthesis in oil palm flowers thus allowing enhanced carbon flux into the phenylpropene pathway. This study augments our understanding of the diverse roles that EAR-motif-containing MYBs play to fine tune the metabolic flux along the various branches of core phenylpropanoid pathway. This will aid in metabolic engineering of plant aromatic compounds.

Details

show
hide
Language(s):
 Dates: 2017-11-132017-11-23
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: ITB530
DOI: 10.1186/s12870-017-1174-4
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: BMC Plant Biology
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: BioMed Central
Pages: - Volume / Issue: 17 Sequence Number: 219 Start / End Page: - Identifier: ISSN: 1471-2229
CoNE: https://pure.mpg.de/cone/journals/resource/111032787578000