English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Understanding terrestrial water storage variations in northern latitudes across scales

Trautmann, T., Koirala, S., Carvalhais, N., Eicker, A., Fink, M., Niemann, C., et al. (2018). Understanding terrestrial water storage variations in northern latitudes across scales. Hydrology and Earth System Sciences, 22(7), 4061-4082. doi:10.5194/hess-22-4061-2018.

Item is

Files

show Files
hide Files
:
BGC2764D.pdf (Preprint), 2MB
Name:
BGC2764D.pdf
Description:
Discussion paper
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
BGC2764.pdf (Publisher version), 4MB
Name:
BGC2764.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
BGC2764s1.pdf (Supplementary material), 2MB
Name:
BGC2764s1.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show
hide
Locator:
http://dx.doi.org/10.5194/hess-22-4061-2018 (Publisher version)
Description:
OA
OA-Status:

Creators

show
hide
 Creators:
Trautmann, Tina1, 2, Author           
Koirala, Sujan3, Author           
Carvalhais, Nuno3, Author           
Eicker, Annette, Author
Fink, Manfred, Author
Niemann, Christoph, Author
Jung, Martin1, Author           
Affiliations:
1Global Diagnostic Modelling, Dr. Martin Jung, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1938311              
2IMPRS International Max Planck Research School for Global Biogeochemical Cycles, Max Planck Institute for Biogeochemistry, Max Planck Society, Hans-Knöll-Str. 10, 07745 Jena, DE, ou_1497757              
3Model-Data Integration, Dr. Nuno Carvalhais, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1938310              

Content

show
hide
Free keywords: -
 Abstract: The GRACE satellites provide signals of total terrestrial water storage (TWS) variations over large spatial domains at seasonal to inter-annual time scales. While the GRACE data have been extensively and successfully used to assess spatio-temporal changes in TWS, little effort has been made to quantify the relative contributions of snow pack, soil moisture and other components to the integrated TWS signal across northern latitudes, which is essential to gain a better insight into the underlying hydrological processes. Therefore, this study aims to assess which storage component dominates the spatio-temporal patterns of TWS variations in the humid regions of northern mid-to-high latitudes. To do so, we constrained a rather parsimonious hydrological model with multiple state-of-the-art Earth observation products including GRACE TWS anomalies, estimates of snow water equivalent, evapotranspiration fluxes, and gridded runoff estimates. The optimized model demonstrates good agreement with observed hydrological patterns, and was used to assess the relative contributions of solid (snow pack) versus liquid (soil moisture, retained water) storage components to total TWS variations. In particular, we analysed whether the same storage component dominates TWS variations at seasonal and inter-annual temporal scales, and whether the dominating component is consistent across small to large spatial scales. Consistent with previous studies, we show that snow dynamics control seasonal TWS variations across spatial scales in the northern mid-to-high latitudes. In contrast, we find that inter-annual variations of TWS are dominated by liquid water storages, comprising mainly of soil moisture. However, as the spatial domain over which the storages are averaged becomes larger, the relative contribution of snow to inter-annual TWS variations increases. This is due to a stronger spatial coherence of snow anomalies as opposed to spatially more heterogeneous liquid water anomalies that cancel out over large spatial domains. The findings first highlight the effectiveness of our model-data fusion approach that jointly interprets multiple Earth observation data streams with a simple model. Secondly, they reveal that the determinants of TWS variations in snow-affected northern latitudes are scale dependent. We conclude that inferred driving mechanisms of TWS cannot simply be transferred from one scale to another, which is of particular relevance for understanding the short and long-term variability of water resources.

Details

show
hide
Language(s):
 Dates: 2018-07-112018-07-112018-07
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: BGC2764
DOI: 10.5194/hess-22-4061-2018
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Hydrology and Earth System Sciences
  Other : HESS
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: European Geosciences Union
Pages: - Volume / Issue: 22 (7) Sequence Number: - Start / End Page: 4061 - 4082 Identifier: ISSN: 1607-7938
CoNE: https://pure.mpg.de/cone/journals/resource/1607-7938