Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Force loading explains spatial sensing of ligands by cells

Oria, R., Wiegand, T., Escribano, J., Elosegui-Artola, A., Uriarte, J. J., Moreno-Pulido, C., et al. (2017). Force loading explains spatial sensing of ligands by cells. Nature, 552, 219-224. doi:10.1038/nature24662.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Nature_552_2017_219.pdf (beliebiger Volltext), 7MB
 
Datei-Permalink:
-
Name:
Nature_552_2017_219.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Eingeschränkt (Max Planck Institute for Medical Research, MHMF; )
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-
:
Nature_552_2017_219_Suppl.pdf (beliebiger Volltext), 81KB
 
Datei-Permalink:
-
Name:
Nature_552_2017_219_Suppl.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Eingeschränkt (Max Planck Institute for Medical Research, MHMF; )
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://www.nature.com/articles/nature24662.pdf (beliebiger Volltext)
Beschreibung:
-
OA-Status:
Beschreibung:
-
OA-Status:
externe Referenz:
https://doi.org/10.1038/nature24662 (beliebiger Volltext)
Beschreibung:
-
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Oria, Roger, Autor
Wiegand, Tina1, 2, Autor           
Escribano, Jorge, Autor
Elosegui-Artola, Alberto, Autor
Uriarte, Juan Jose, Autor
Moreno-Pulido, Cristian, Autor
Platzman, Ilia1, 2, Autor           
Delcanale, Pietro, Autor
Albertazzi, Lorenzo, Autor
Navajas, Daniel, Autor
Trepat, Xavier, Autor
García-Aznar, José Manual, Autor
Cavalcanti-Adam, Elisabetta Ada1, 2, Autor           
Roca-Cusachs, Pere, Autor
Affiliations:
1Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society, ou_2364731              
2Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Biomaterials – cells, Biophysics, Focal adhesion, Mechanotransduction, Nanoparticles
 Zusammenfassung: Cells can sense the density and distribution of extracellular matrix (ECM) molecules by means of individual integrin proteins and larger, integrin-containing adhesion complexes within the cell membrane. This spatial sensing drives cellular activity in a variety of normal and pathological contexts1,2. Previous studies of cells on rigid glass surfaces have shown that spatial sensing of ECM ligands takes place at the nanometre scale, with integrin clustering and subsequent formation of focal adhesions impaired when single integrin–ligand bonds are separated by more than a few tens of nanometres3,4,5,6. It has thus been suggested that a crosslinking ‘adaptor’ protein of this size might connect integrins to the actin cytoskeleton, acting as a molecular ruler that senses ligand spacing directly3,7,8,9. Here, we develop gels whose rigidity and nanometre-scale distribution of ECM ligands can be controlled and altered. We find that increasing the spacing between ligands promotes the growth of focal adhesions on low-rigidity substrates, but leads to adhesion collapse on more-rigid substrates. Furthermore, disordering the ligand distribution drastically increases adhesion growth, but reduces the rigidity threshold for adhesion collapse. The growth and collapse of focal adhesions are mirrored by, respectively, the nuclear or cytosolic localization of the transcriptional regulator protein YAP. We explain these findings not through direct sensing of ligand spacing, but by using an expanded computational molecular-clutch model10,11, in which individual integrin–ECM bonds—the molecular clutches—respond to force loading by recruiting extra integrins, up to a maximum value. This generates more clutches, redistributing the overall force among them, and reducing the force loading per clutch. At high rigidity and high ligand spacing, maximum recruitment is reached, preventing further force redistribution and leading to adhesion collapse. Measurements of cellular traction forces and actin flow speeds support our model. Our results provide a general framework for how cells sense spatial and physical information at the nanoscale, precisely tuning the range of conditions at which they form adhesions and activate transcriptional regulation.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2017-01-162017-10-132017-12-062017-12-14
 Publikationsstatus: Erschienen
 Seiten: 6
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nature
  Kurztitel : Nature
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Nature Publishing Group
Seiten: - Band / Heft: 552 Artikelnummer: - Start- / Endseite: 219 - 224 Identifikator: ISSN: 0028-0836
CoNE: https://pure.mpg.de/cone/journals/resource/954925427238