Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Enhanced Control of Transient Raman Scattering Using Buffered Hydrogen in Hollow-Core Photonic Crystal Fibers

Hosseini, P., Novoa, D., Abdolvand, A., & Russell, P. S. J. (2017). Enhanced Control of Transient Raman Scattering Using Buffered Hydrogen in Hollow-Core Photonic Crystal Fibers. PHYSICAL REVIEW LETTERS, 19(25): 253903. doi:10.1103/PhysRevLett.119.253903.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Hosseini, P.1, 2, Autor           
Novoa, D.1, Autor           
Abdolvand, A.1, Autor           
Russell, P. St. J.1, Autor           
Affiliations:
1Russell Division, Max Planck Institute for the Science of Light, Max Planck Society, ou_2364721              
2International Max Planck Research School, Max Planck Institute for the Science of Light, Max Planck Society, Staudtstraße 2, 91058 Erlangen, DE, ou_2364697              

Inhalt

einblenden:
ausblenden:
Schlagwörter: GAS-MIXTURES; COHERENCE PROPERTIES; LINE-PROFILES; WAVE-GUIDES; GENERATION; CONVERSION; STOKES; DEPENDENCE; LASERS; SHIFTPhysics;
 Zusammenfassung: Many reports on stimulated Raman scattering in mixtures of Raman-active and noble gases indicate that the addition of a dispersive buffer gas increases the phase mismatch to higher-order Stokes and anti-Stokes sidebands, resulting in a preferential conversion to the first few Stokes lines, accompanied by a significant reduction in the Raman gain due to collisions with gas molecules. Here we report that, provided the dispersion can be precisely controlled, the effective Raman gain in a gas-filled hollow-core photonic crystal fiber can actually be significantly enhanced when a buffer gas is added. This counterintuitive behavior occurs when the nonlinear coupling between the interacting fields is strong and can result in a performance similar to that of a pure Raman-active gas, but at a much lower total gas pressure, allowing competing effects such as Raman backscattering to be suppressed. We report high modal purity in all the emitted sidebands, along with anti-Stokes conversion efficiencies as high as 5% in the visible and 2% in the ultraviolet. This new class of gas-based waveguide device, which allows the nonlinear optical response to be beneficially pressure-tuned by the addition of buffer gases, may find important applications in laser science and spectroscopy.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2017
 Publikationsstatus: Online veröffentlicht
 Seiten: 5
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 000418574600004
DOI: 10.1103/PhysRevLett.119.253903
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: PHYSICAL REVIEW LETTERS
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA : AMER PHYSICAL SOC
Seiten: - Band / Heft: 19 (25) Artikelnummer: 253903 Start- / Endseite: - Identifikator: ISSN: 0031-9007