English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Cluster Formation in the Superconducting Complex Intermetallic Compound Be21Pt5

Amon, A., Ormeci, A., Bobnar, M., Akselrud, L. G., Avdeev, M., Gumeniuk, R., et al. (2018). Cluster Formation in the Superconducting Complex Intermetallic Compound Be21Pt5. Accounts of Chemical Research, 51(2), 214-222. doi:10.1021/acs.accounts.7b00561.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0000-2FF6-7 Version Permalink: http://hdl.handle.net/21.11116/0000-0001-3AF3-C
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Amon, Alfred1, Author              
Ormeci, Alim1, Author              
Bobnar, Matej1, Author              
Akselrud, Lev G.1, Author              
Avdeev, Maxim2, Author
Gumeniuk, Roman2, Author
Burkhardt, Ulrich3, Author              
Prots, Yurii4, Author              
Hennig, Christoph2, Author
Leithe-Jasper, Andreas5, Author              
Grin, Yuri6, Author              
Affiliations:
1Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863405              
2External Organizations, ou_persistent22              
3Ulrich Burkhardt, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863422              
4Yuri Prots, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863424              
5Andreas Leithe-Jasper, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863406              
6Juri Grin, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863413              

Content

show
hide
Free keywords: -
 Abstract: ConspectusMaterials with the crystal structure of γ-brass type (Cu5Zn8 type) are typical representatives of intermetallic compounds. From the electronic point of view, they are often interpreted using the valence electron concentration approach of Hume–Rothery, developed previously for transition metals. The γ-brass-type phases of the main-group elements are rather rare. The intermetallic compound Be21Pt5, a new member of this family, was synthesized, and its crystal structure, chemical bonding, and physical properties were characterized.Be21Pt5 crystallizes in the cubic space group F4̅3m with lattice parameter a = 15.90417(3) Å and 416 atoms per unit cell. From the crystallographic point of view, the binary substance represents a special family of intermetallic compounds called complex metallic alloys (CMA). The crystal structure was solved by a combination of synchrotron and neutron powder diffraction data. Besides the large difference in the scattering power of the components, the structure solution was hampered by the systematic presence of very weak reflections mimicking wrong symmetry. The structural motif of Be21Pt5 is described as a 2 × 2 × 2 superstructure of the γ-brass structure (Cu5Zn8 type) or 6 × 6 × 6 superstructure of the simple bcc structural pattern with distinct distribution of defects. The main building elements of the crystal structure are four types of nested polyhedral units (clusters) with the compositions Be22Pt4 and Be20Pt6. Each cluster contains four shells (4 + 4 + 6 + 12 atoms). Clusters with different compositions reveal various occupation of the shells by platinum and beryllium. Polyhedral nested units with the same composition differ by the distance of the shell atoms to the cluster center.Analysis of chemical bonding was made applying the electron localizability approach, a quantum chemical technique operating in real space that is proven to be especially efficient for intermetallic compounds. Evaluations of the calculated electron density and electron localizability indicator (ELI-D) revealed multicenter bonding, being in accordance with the low valence electron count per atom in Be21Pt5. A new type of atomic interactions in intermetallic compounds, cluster bonds involving 8 or even 14 atoms, is found in the clusters with shorter distances between the shell atoms and the cluster centers. In the remaining clusters, four- and five-center bonds characterize the atomic interactions. Multicluster interactions within the polyhedral nested units and three-center polar intercluster bonds result in a three-dimensional framework resembling the structural pattern of NaCl. Be21Pt5 is a diamagnetic metal and one of rather rare CMA compounds revealing superconductivity (Tc = 2.06 K).

Details

show
hide
Language(s): eng - English
 Dates: 2018-01-092018-01-09
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: DOI: 10.1021/acs.accounts.7b00561
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Accounts of Chemical Research
  Other : Acc. Chem. Res.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Easton, Pa. : American Chemical Society
Pages: - Volume / Issue: 51 (2) Sequence Number: - Start / End Page: 214 - 222 Identifier: ISSN: 0001-4842
CoNE: /journals/resource/954925373792