English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Quantitative optical nanophysiology of Ca2+ signaling at inner hair cell active zones.

Neef, J., Urban, N. T., Ohn, T. L., Frank, T., Jean, P., Hell, S. W., et al. (2018). Quantitative optical nanophysiology of Ca2+ signaling at inner hair cell active zones. Nature Communications, 9: 290. doi:10.1038/s41467-017-02612-y.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0000-300A-F Version Permalink: http://hdl.handle.net/21.11116/0000-0003-AD36-E
Genre: Journal Article

Files

show Files
hide Files
:
2526187.pdf (Publisher version), 4MB
Name:
2526187.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
2526187_Suppl.pdf (Supplementary material), 3MB
Name:
2526187_Suppl.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Neef, J.1, Author              
Urban, N. T.2, Author              
Ohn, T. L., Author
Frank, T., Author
Jean, P., Author
Hell, S. W.2, Author              
Willig, K. I.2, Author              
Moser, T.1, Author              
Affiliations:
1Research Group of Synaptic Nanophysiology, MPI for Biophysical Chemistry, Max Planck Society, ou_2205655              
2Department of NanoBiophotonics, MPI for biophysical chemistry, Max Planck Society, ou_578627              

Content

show
hide
Free keywords: -
 Abstract: Ca2+ influx triggers the release of synaptic vesicles at the presynaptic active zone (AZ). A quantitative characterization of presynaptic Ca2+ signaling is critical for understanding synaptic transmission. However, this has remained challenging to establish at the required resolution. Here, we employ confocal and stimulated emission depletion (STED) microscopy to quantify the number (20–330) and arrangement (mostly linear 70 nm × 100–600 nm clusters) of Ca2+ channels at AZs of mouse cochlear inner hair cells (IHCs). Establishing STED Ca2+ imaging, we analyze presynaptic Ca2+ signals at the nanometer scale and find confined elongated Ca2+ domains at normal IHC AZs, whereas Ca2+ domains are spatially spread out at the AZs of bassoon-deficient IHCs. Performing 2D-STED fluorescence lifetime analysis, we arrive at estimates of the Ca2+ concentrations at stimulated IHC AZs of on average 25 µM. We propose that IHCs form bassoon-dependent presynaptic Ca2+-channel clusters of similar density but scalable length, thereby varying the number of Ca2+ channels amongst individual AZs.

Details

show
hide
Language(s): eng - English
 Dates: 2018-01-18
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: Peer
 Identifiers: DOI: 10.1038/s41467-017-02612-y
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature Communications
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: 17 Volume / Issue: 9 Sequence Number: 290 Start / End Page: - Identifier: -