English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Flagellin glycoproteomics of the periodontitis associated pathogen Selenomonas sputigena reveals previously not described O-glycans and rhamnose fragment rearrangement occurring on the glycopeptides

Rath, C. B., Schirmeister, F., Figl, R., Seeberger, P. H., Schaeffer, C., & Kolarich, D. (2018). Flagellin glycoproteomics of the periodontitis associated pathogen Selenomonas sputigena reveals previously not described O-glycans and rhamnose fragment rearrangement occurring on the glycopeptides. Molecular and Cellular Proteomics, 17(4), 721-736. doi:10.1074/mcp.RA117.000394.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0000-3ADA-A Version Permalink: http://hdl.handle.net/21.11116/0000-0006-E937-6
Genre: Journal Article

Files

show Files
hide Files
:
Author Manuscript.pdf (Any fulltext), 2MB
Name:
Author Manuscript.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
Article.pdf (Publisher version), 3MB
 
File Permalink:
-
Name:
Article.pdf
Description:
-
Visibility:
Restricted (Max Planck Institute of Colloids and Interfaces, MTKG; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Rath, Cornelia B., Author
Schirmeister, Falko1, Author              
Figl, Rudolf, Author
Seeberger, Peter H.2, Author              
Schaeffer, Christina, Author
Kolarich, Daniel1, Author              
Affiliations:
1Daniel Kolarich, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863301              
2Peter H. Seeberger - Vaccine Development, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863308              

Content

show
hide
Free keywords: -
 Abstract: Flagellated, Gram-negative, anaerobic, crescent-shaped Selenomonas species are colonizers of the digestive system, where they act at the interface between health and disease. Selenomonas sputigena is also considered a potential human periodontal pathogen, but information on its virulence factors and underlying pathogenicity mechanisms is scarce. Here we provide the first report of a Selenomonas glycoprotein, showing that S. sputigena produces a diversely and heavily O-glycosylated flagellin C9LY14 as a major cellular protein, which carries various hitherto undescribed rhamnose- and N-acetylglucosamine linked O-glycans in the range from mono- to hexasaccharides. A comprehensive glycomic and glycoproteomic assessment revealed extensive glycan macro- and micro-heterogeneity identified from 22 unique glycopeptide species. From the multiple sites of glycosylation, five were unambiguously identified on the 437-amino acid C9LY14 protein (Thr149, Ser182, Thr199, Thr259, and Ser334), the only flagellin protein identified. The O-glycans additionally showed modifications by methylation and putative acetylation. Some O-glycans carried hitherto undescribed residues/modifications as determined by their respective m/z values, reflecting the high diversity of native S. sputigena flagellin. We also found that monosaccharide rearrangement occurred during collision-induced dissociation (CID) of protonated glycopeptide ions. This effect resulted in pseudo Y1-glycopeptide fragment ions that indicated the presence of additional glycosylation sites on a single glycopeptide. CID oxonium ions and electron transfer dissociation, however, confirmed that just a single site was glycosylated, showing that glycan-to-peptide rearrangement can occur on glycopeptides and that this effect is influenced by the molecular nature of the glycan moiety. This effect was most pronounced with disaccharides. This study is the first report on O-linked flagellin glycosylation in a Selenomonas species, revealing that C9LY14 is one of the most heavily glycosylated flagellins described to date. This study contributes to our understanding of the largely under-investigated surface properties of oral bacteria. The data have been deposited to the ProteomeXchange with identifier PXD005859.

Details

show
hide
Language(s):
 Dates: 2018-01-162018
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1074/mcp.RA117.000394
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Molecular and Cellular Proteomics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Bethesda, MD : American Society for Biochemistry and Molecular Biology
Pages: - Volume / Issue: 17 (4) Sequence Number: - Start / End Page: 721 - 736 Identifier: ISSN: 1535-9476