English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  An image-processing method to detect sub-optical features based on understanding noise in intensity measurements

Bhatia, T. (2018). An image-processing method to detect sub-optical features based on understanding noise in intensity measurements. European Biophysics Journal, 47(5), 531-538. doi:10.1007/s00249-017-1273-z.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0000-73F8-7 Version Permalink: http://hdl.handle.net/21.11116/0000-0001-AACF-7
Genre: Journal Article

Files

show Files
hide Files
:
Article.pdf (Publisher version), 2MB
Name:
Article.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Bhatia, Tripta1, Author              
Affiliations:
1Rumiana Dimova, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863328              

Content

show
hide
Free keywords: Open Access
 Abstract: Accurate quantitative analysis of image data requires that we distinguish between fluorescence intensity (true signal) and the noise inherent to its measurements to the extent possible. We image multilamellar membrane tubes and beads that grow from defects in the fluid lamellar phase of the lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine dissolved in water and water-glycerol mixtures by using fluorescence confocal polarizing microscope. We quantify image noise and determine the noise statistics. Understanding the nature of image noise also helps in optimizing image processing to detect sub-optical features, which would otherwise remain hidden. We use an image-processing technique “optimum smoothening” to improve the signal-to-noise ratio of features of interest without smearing their structural details. A high SNR renders desired positional accuracy with which it is possible to resolve features of interest with width below optical resolution. Using optimum smoothening, the smallest and the largest core diameter detected is of width $$88 \pm 23$$ 88 ± 23 and $$6860 \pm 50$$ 6860 ± 50 nm, respectively, discussed in this paper. The image-processing and analysis techniques and the noise modeling discussed in this paper can be used for detailed morphological analysis of features down to sub-optical length scales that are obtained by any kind of fluorescence intensity imaging in the raster mode.

Details

show
hide
Language(s):
 Dates: 2018-02-012018-07
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1007/s00249-017-1273-z
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: European Biophysics Journal
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Berlin : Springer
Pages: - Volume / Issue: 47 (5) Sequence Number: - Start / End Page: 531 - 538 Identifier: ISSN: 0175-7571