English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  1H MRS in the human spinal cord at 7 T using a dielectric waveguide transmitter, RF shimming and a high density receive array

Henning, A., Koning, W., Fuchs, A., Raaijmakers, A., Bluemink, J., van den Berg, C., et al. (2016). 1H MRS in the human spinal cord at 7 T using a dielectric waveguide transmitter, RF shimming and a high density receive array. NMR in Biomedicine, 29(9), 1231-1239. doi:10.1002/nbm.3541.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0000-796F-D Version Permalink: http://hdl.handle.net/21.11116/0000-0001-1EFE-1
Genre: Journal Article

Files

show Files

Locators

show
hide
Locator:
Link (Any fulltext)
Description:
-

Creators

show
hide
 Creators:
Henning, A1, 2, Author              
Koning, W, Author
Fuchs, A, Author
Raaijmakers, A, Author
Bluemink, JJ, Author
van den Berg, CAT, Author
Boer, VO, Author
Klomp, DWJ, Author
Affiliations:
1Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794              
2Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_2528692              

Content

show
hide
Free keywords: -
 Abstract: Multimodal MRI is the state of the art method for clinical diagnostics and therapy monitoring of the spinal cord, with MRS being an emerging modality that has the potential to detect relevant changes of the spinal cord tissue at an earlier stage and to enhance specificity. Methodological challenges related to the small dimensions and deep location of the human spinal cord inside the human body, field fluctuations due to respiratory motion, susceptibility differences to adjacent tissue such as vertebras and pulsatile flow of the cerebrospinal fluid hinder the clinical application of 1H MRS to the human spinal cord. Complementary to previous studies that partly addressed these problems, this work aims at enhancing the signal-to-noise ratio (SNR) of 1H MRS in the human spinal cord. To this end a flexible tight fit high density receiver array and ultra-high field strength (7 T) were combined. A dielectric waveguide and dipole antenna transmission coil allowed for dual channel RF shimming, focusing the RF field in the spinal cord, and an inner-volume saturated semi-LASER sequence was used for robust localization in the presence of B1+ inhomogeneity. Herein we report the first 7 T spinal cord 1H MR spectra, which were obtained in seven independent measurements of 128 averages each in three healthy volunteers. The spectra exhibit high quality (full width at half maximum 0.09 ppm, SNR 7.6) and absence of artifacts and allow for reliable quantification of N-acetyl aspartate (NAA) (NAA/Cr (creatine) 1.31 ± 0.20; Cramér–Rao lower bound (CRLB) 5), total choline containing compounds (Cho) (Cho/Cr 0.32 ± 0.07; CRLB 7), Cr (CRLB 5) and myo-inositol (mI) (mI/Cr 1.08 ± 0.22; CRLB 6) in 7.5 min in the human cervical spinal cord. Thus metabolic information from the spinal cord can be obtained in clinically feasible scan times at 7 T, and its benefit for clinical decision making in spinal cord disorders will be investigated in the future using the presented methodology.

Details

show
hide
Language(s):
 Dates: 2016-09
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: DOI: 10.1002/nbm.3541
BibTex Citekey: HenningKFBLvK2016
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: NMR in Biomedicine
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 29 (9) Sequence Number: - Start / End Page: 1231 - 1239 Identifier: -