ausblenden:
Schlagwörter:
-
Zusammenfassung:
Aims
Dynamically phase-cycled radial balanced steady-state free precession (DYPR-SSFP) is a method for efficient banding artifact removal in bSSFP imaging. Based on a varying radiofrequency (RF) phase-increment in combination with a radial trajectory, DYPR-SSFP allows obtaining a banding-free image out of a single acquired k-space. The purpose of this work is to present an extension of this technique, enabling fast three-dimensional isotropic banding-free bSSFP imaging.
Methods
While banding artifact removal with DYPR-SSFP relies on the applied dynamic phase-cycle, this aspect can lead to artifacts, at least when the number of acquired projections lies below a certain limit. However, by using a 3D radial trajectory with quasi-random view ordering for image acquisition, this problem is intrinsically solved, enabling 3D DYPR-SSFP imaging at or even below the Nyquist criterion. The approach is validated for brain and knee imaging at 3 Tesla.
Results
Volumetric, banding-free images were obtained in clinically acceptable scan times with an isotropic resolution up to 0.56 mm.
Conclusion
The combination of DYPR-SSFP with a 3D radial trajectory allows banding-free isotropic volumetric bSSFP imaging with no expense of scan time. Therefore, this is a promising candidate for clinical applications such as imaging of cranial nerves or articular cartilage.