English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Downfield MR Spectroscopy at Ultrahigh Magnetic Fields

Fichtner, N., Henning, A., Giapitzakis, I., Zoelch, N., Avdievich, N., Boesch, C., et al. (2016). Downfield MR Spectroscopy at Ultrahigh Magnetic Fields. Poster presented at 11th Annual Meeting Brain Connectivity, Bern, Switzerland.

Item is

Files

show Files

Locators

show
hide
Locator:
Link (Any fulltext)
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Fichtner, N, Author
Henning, A1, 2, Author           
Giapitzakis, I1, 2, Author           
Zoelch, N, Author
Avdievich, N1, 2, Author           
Boesch, C, Author
Kreis, R, Author
Affiliations:
1Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794              
2Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_2528692              

Content

show
hide
Free keywords: -
 Abstract: Introduction: Magnetic resonance spectroscopy benefits from using ultrahigh field scanners, as both the signal to noise ratio (SNR) and the separation of peaks improve. Inclusion of the downfield part of the spectrum (left of water peak) in addition to the generally used upfield part of the 1H MR spectrum is expected to allow for better monitoring of pathologies and metabolism in humans. The downfield part at 5-10ppm is less well characterized than the upfield spectrum, although some data is available for animal brain at high fields, as well as human brain at 3T. Experiments have been performed to elucidate the downfield spectrum in human brain and to quantify metabolite relaxation times T1 and T2 in grey matter at 7T using series of spectra with variable inversion recovery (IR) and echo time (TE) delays. Initial downfield experiments have also been performed in humans at 9.4T. Materials and Methods: Acquisition methods at 7T used a Philips 7T whole body scanner (UZH/ETH Zürich), with a voxel of interest placed in the visual cortex. A series of TEs and IRs was acquired in a total of 22 healthy volunteers. At 9.4T, spectra were acquired in three healthy volunteers on a Siemens whole-body MRI scanner (MPI Tuebingen). Results and Discussion: The spectra acquired at 7T and 9.4T demonstrate significant improvements in SNR and peak separation compared to those at lower field strengths. The averaged data sets from the 7T series were combined to develop a spectral model of partially overlapping signals this heuristic model describes the experimental data well and the results for many of the peaks are very consistent across subjects. T1 values found at 7T are mostly higher than those found at 3T, in particular for the NAA peak. Several peaks show a particularly short T1 in comparison to the others, indicating that they predominantly originate from macromolecules. The T2 values are in general much shorter than those found for upfield peaks.

Details

show
hide
Language(s):
 Dates: 2016-03-31
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: FichtnerHGZABK2016
 Degree: -

Event

show
hide
Title: 11th Annual Meeting Brain Connectivity
Place of Event: Bern, Switzerland
Start-/End Date: -

Legal Case

show

Project information

show

Source 1

show
hide
Title: 11th Annual Meeting Brain Connectivity
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: 36 - 36 Identifier: -