Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

EndNote (UTF-8)
 
DownloadE-Mail
  Supervised learning sets benchmark for robust spike rate inference from calcium imaging signals

Bethge, M., Theis, L., Berens, P., Froudarakis, E., Reimer, J., Roman-Roson, M., et al. (2016). Supervised learning sets benchmark for robust spike rate inference from calcium imaging signals. Poster presented at Computational and Systems Neuroscience Meeting (COSYNE 2016), Salt Lake City, UT, USA.

Item is

Externe Referenzen

ausblenden:
externe Referenz:
Link (beliebiger Volltext)
Beschreibung:
-
OA-Status:

Urheber

ausblenden:
 Urheber:
Bethge, M1, Autor           
Theis, L1, Autor           
Berens, P1, Autor           
Froudarakis, E, Autor
Reimer, J, Autor
Roman-Roson, M, Autor
Baden, T, Autor
Euler, T, Autor
Tolias, A, Autor           
Affiliations:
1University of Tübingen, Werner Reichardt Centre of Integrative Neuroscience , ou_persistent22              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: A fundamental challenge in calcium imaging has been to infer spike rates of neurons from the measured noisy calcium fluorescence traces. We collected a large benchmark dataset (>100.000 spikes, 73 neurons) recorded from varying neural tissue (V1 and retina) using different calcium indicators (OGB-1 and GCaMP6s). We introduce a new algorithm based on supervised learning in flexible probabilistic models and systematically compare it against a range of spike inference algorithms published previously. We show that our new supervised algorithm outperforms all previously published techniques. Importantly, it even performs better than other algorithms when applied to entirely new datasets for which no simultaneously recorded data is available. Future data acquired in new experimental conditions can easily be used to further improve its spike prediction accuracy and generalization performance. Finally, we show that comparing algorithms on artificial data is not informative about performance on real data, suggesting that benchmark datasets such as the one we provide may greatly facilitate future algorithmic developments.

Details

ausblenden:
Sprache(n):
 Datum: 2016-02
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: BibTex Citekey: BethgeTBFRRBET2016
 Art des Abschluß: -

Veranstaltung

ausblenden:
Titel: Computational and Systems Neuroscience Meeting (COSYNE 2016)
Veranstaltungsort: Salt Lake City, UT, USA
Start-/Enddatum: -

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Computational and Systems Neuroscience Meeting (COSYNE 2016)
Genre der Quelle: Konferenzband
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: - Artikelnummer: II-98 Start- / Endseite: 163 - 163 Identifikator: -