Help Privacy Policy Disclaimer
  Advanced SearchBrowse


  Ex-vivo and in-vivo ultra-High-Field R2* and QSM microimaging in Alzheimer’s disease

Tuzzi, E., Hagberg, G., Balla, D., Loureiro, J., Neumann, M., Laske, C., et al. (2016). Ex-vivo and in-vivo ultra-High-Field R2* and QSM microimaging in Alzheimer’s disease. Magnetic Resonance Materials in Physics, Biology and Medicine, 29(Supplement 1), S144- S145.

Item is


show hide
Genre: Meeting Abstract


show Files


Link (Publisher version)


Tuzzi, E1, 2, Author              
Hagberg, G1, 2, Author              
Balla, DZ1, 2, 3, Author              
Loureiro, J2, Author              
Neumann, M, Author
Laske, C, Author
Pohmann, R1, 2, Author              
Valverde, M2, 3, Author              
Scheffler, K1, 2, Author              
1Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794              
2Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497796              
3Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497798              


Free keywords: -
 Abstract: Purpose/Introduction: Conspicuous advances in MRI imaging in the last decade catalyzed the quest for novel approaches to investigate Alzheimer’s disease. Till now a diagnosis is only unequivocally defined by post-mortem histology. High resolution imaging is potentially feasible at ultra-high magnetic field strength, allowing imaging of pathologic processes at a unique level of detail. Recently it has been demonstrated that cortical phase changes in T2* weighted MRI are characteristic for Alzheimer’s disease [1]. b-amyloid deposits likely contribute significantly to the observed phase effect [2,3]. The orientation dependence of such phase effects can be overcome by the use of quantitative susceptibility mapping (QSM). Our purpose is to explore the source of the observed MR phase signal changes by comparing quantitative susceptibility and R2* maps obtained in vivo at 9.4T as well as in post mortem samples at both 9.4T and 14T. The maps are also investigated by histology and here preliminary data are presented. Subjects and Methods: The same frontal cortex area of two post mortem samples from an Alzheimer’s diseased patient and a healthy subject, respectively, were examined at 14T using a GRE-T2*-weighted image (50 lm isotropic voxels, matrix = 1000 9 749 9 512, FOV = 50 9 37.45 9 25.6 mm3, TR = 34.4 ms, TE = 17.5 ms, 4 averages, total scan time = 14.67 h) for QSM and a multi echo sequence for R2* mapping (100 lm isotropic voxels, matrix = 500 9 300 9 256; FOV = 50 9 30 9 25.6 mm3; TR = 27 ms, TE = 4.5, 11, 17.5 ms, acquisition time = 2.3 h). Phase shift information was used to generate data sets for QSM analysis. At 9.4T coronal post mortem brain slices of the same donors, and in vivo measurements of four patients with AD and frontal lobe dementia were also investigated using multi echo (N = 5) 3D-GRE imaging (0.375 9 0.0.375 9 0.8 mm3 voxelsize, FOV = 192 9 174 9 70.4 mm3, matrixsize = 512 9 464 9 88, TR = 35 ms; TE = 6 to 30 ms in steps of 6 ms, total acquisition time = 8,7 s) and high resolution acquisition-weighted 3D-GRE imaging (0.130 9 0.130 9 0.6 mm3 voxelsize, TR = 30 ms, TE = 18 ms, acquisition time = 14 min). Results: Both in vivo and ex vivo R2* and QSM maps showed distinct cortical layering patterns (Fig 1, 2). Compared to healthy subjects, we observed an apparent broadening of the central cortical layer with increased R2* and QSM values consistent with paramagnetic effects in AD. No single plaques could be observed post mortem at the current isotropic voxel size of 50 micrometers. Discussion/Conclusion: Clinical valid methods for studying and, eventually, diagnosing AD in vivo by MRI are emerging. Quantitative R2* and QSM methods at ultra-high-field hold promise for this endeavor and detect changes that involve the layering pattern of the cortical rim. Future studies that target these structures by multi-modal means are necessary to further characterize the signal sources are necessary.


 Dates: 2016-09-30
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1007/s10334-016-0569-9
BibTex Citekey: TuzziHBLNLPVS2016
 Degree: -


Title: 33rd Annual Scientific Meeting of the European Society for Magnetic Resonance in Medicine and Biology (ESMRMB 2016)
Place of Event: Wien, Austria
Start-/End Date: -

Legal Case


Project information


Source 1

Title: Magnetic Resonance Materials in Physics, Biology and Medicine
Source Genre: Journal
Publ. Info: -
Pages: - Volume / Issue: 29 (Supplement 1) Sequence Number: - Start / End Page: S144 - S145 Identifier: -