Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Deep Neural Networks: A New Tool for Understanding the Brain

Bethge, M., & Brendel, W. (2016). Deep Neural Networks: A New Tool for Understanding the Brain. Talk presented at Satellite Workshop "Deep Neural Networks": Bernstein Conference 2016. Berlin, Germany.

Item is

Basisdaten

einblenden: ausblenden:
Datensatz-Permalink: http://hdl.handle.net/21.11116/0000-0000-7C4A-3 Versions-Permalink: http://hdl.handle.net/21.11116/0000-0000-DD6C-F
Genre: Vortrag

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
Link (beliebiger Volltext)
Beschreibung:
-

Urheber

einblenden:
ausblenden:
 Urheber:
Bethge, M1, 2, Autor              
Brendel, W, Autor
Affiliations:
1Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794              
2Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497805              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Today, machine learning is developing ever more complex artificial neural networks that are becoming increasingly proficient in mimicking the perceptual inference abilities of humans and animals. This progress sparks many exciting opportunities for Computational Neuroscience. The most basic application is to use deep learning as a tool for fitting data. More generally, however, functionally impressive deep neural networks can be understood as novel model systems that join and extend the range of biological model systems (e.g. fly, rodent, or monkey) studied today. These artificial model systems are particularly useful to study the relation between structure and function, because the full connectome and responses of all neurons are readily available, and the absence of experimental limitations triggers new questions on what it takes to understand neural networks. Deep neural networks can also be used as ground truth models to better assess what conclusions can be drawn from neurophysiological experiments by simulating the experiments under the same limitations we face for biological model systems. The goal of this workshop is to elaborate on these broad ideas by sharing recent successes in using deep neural networks, exchanging new approaches, and sparking discussions on how we can use the potential of recent advances in artificial neural network modeling for computational neuroscience.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2016-09-21
 Publikationsstatus: Im Druck publiziert
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: BibTex Citekey: BethgeB2016
 Art des Abschluß: -

Veranstaltung

einblenden:
ausblenden:
Titel: Satellite Workshop "Deep Neural Networks": Bernstein Conference 2016
Veranstaltungsort: Berlin, Germany
Start-/Enddatum: -
Eingeladen: Ja

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Satellite Workshop "Deep Neural Networks": Bernstein Conference 2016
Genre der Quelle: Konferenzband
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: - Identifikator: -