English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Causal inference in multisensory heading estimation

de Winkel, K., & Bülthoff, H. (2016). Causal inference in multisensory heading estimation. In 17th International Multisensory Research Forum (IMRF 2016) (pp. 32-33).

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0000-7CAC-4 Version Permalink: http://hdl.handle.net/21.11116/0000-0000-E669-7
Genre: Meeting Abstract

Files

show Files

Locators

show
hide
Locator:
Link (Any fulltext)
Description:
-

Creators

show
hide
 Creators:
de Winkel, KN1, 2, 3, Author              
Bülthoff, HH1, 3, 4, Author              
Affiliations:
1Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497797              
2Project group: Motion Perception & Simulation, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_2528705              
3Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794              
4Project group: Cybernetics Approach to Perception & Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_2528701              

Content

show
hide
Free keywords: -
 Abstract: A large body of research shows that the Central Nervous System (CNS) integrates multisensory information in a fashion consistent with Bayesian Inference. However, this strategy should only apply when multisensory signals have a common cause; when signals have independent causes, they should be segregated. We recently developed a Causal Inference (CI) model that can account for this notion in multisensory heading estimation (De Winkel, Katliar, and Bülthoff, 2015). In this particular study, participants were presented with visual-inertial horizontal motion stimuli with various headings and a wide range of discrepancies. Surprisingly, the data suggested that multisensory signals were always integrated–regardless of the discrepancy. In the present work, we hypothesized that the CNS accumulates evidence on signal causality over time. In other words, signals will be segregated when a common cause is unlikely, and integrated otherwise. To test this hypothesis, we expanded the experimental paradigm of the previous study by increasing both the incidence of stimuli with large discrepancies and the range of motion durations. The results reflect CI for the majority of our participants. For some participants, discrepant stimuli were more likely to be integrated for short, and segregated for longer motion durations. We conclude that the CNS includes judgments of signal causality in the heading estimation process. This result may have been occluded in previous research by a relatively low incidence of stimuli with large discrepancies. Moreover, we present evidence that CI is likely to result from an accumulation of evidence over time on signal causality.

Details

show
hide
Language(s):
 Dates: 2016-06-18
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: BibTex Citekey: deWinkelB2016
 Degree: -

Event

show
hide
Title: 17th International Multisensory Research Forum (IMRF 2016)
Place of Event: Suzhou, China
Start-/End Date: -

Legal Case

show

Project information

show

Source 1

show
hide
Title: 17th International Multisensory Research Forum (IMRF 2016)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: 32 - 33 Identifier: -