English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Scene segmentation in early visual cortex during suppression of ventral stream regions

Grassi, P., Zaretskaya, N., & Bartels, A. (2017). Scene segmentation in early visual cortex during suppression of ventral stream regions. NeuroImage, 146, 71-80. doi:10.1016/j.neuroimage.2016.11.024.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0000-C343-8 Version Permalink: http://hdl.handle.net/21.11116/0000-0000-C344-7
Genre: Journal Article

Files

show Files

Locators

show
hide
Locator:
Link (Any fulltext)
Description:
-

Creators

show
hide
 Creators:
Grassi, PR1, 2, Author              
Zaretskaya, N1, 3, Author              
Bartels, A1, 2, Author              
Affiliations:
1Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497798              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794              
3Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497796              

Content

show
hide
Free keywords: -
 Abstract: A growing body of literature suggests that feedback modulation of early visual processing is ubiquitous and central to cortical computation. In particular stimuli with high-level content that invariably activate ventral object responsive regions have been shown to suppress early visual cortex. This suppression was typically interpreted in the framework of predictive coding and feedback from ventral regions. Here we examined early visual modulation during perception of a bistable Gestalt illusion that has previously been shown to be mediated by dorsal parietal cortex rather than by ventral regions that were not activated. The bistable dynamic stimulus consisted of moving dots that could either be perceived as corners of a large moving cube (global Gestalt) or as distributed sets of locally moving elements. We found that perceptual binding of local moving elements into an illusory Gestalt led to spatially segregated differential modulations in both, V1 and V2: representations of illusory lines and foreground were enhanced, while inducers and background were suppressed. Furthermore, correlation analyses suggest that distinct mechanisms govern fore- and background modulation. Our results demonstrate that motion-induced Gestalt perception differentially modulates early visual cortex in the absence of ventral stream activation.

Details

show
hide
Language(s):
 Dates: 2017-02
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: DOI: 10.1016/j.neuroimage.2016.11.024
BibTex Citekey: GrassiZB2016_5
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: NeuroImage
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 146 Sequence Number: - Start / End Page: 71 - 80 Identifier: -