English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Increased pregenual anterior cingulate glucose and lactate concentrations in major depressive disorder

Ernst, J., Hock, A., Henning, A., Seifritz, E., Boeker, H., & Grimm, S. (2017). Increased pregenual anterior cingulate glucose and lactate concentrations in major depressive disorder. Molecular Psychiatry, 22(1), 113-119. doi:10.1038/mp.2016.73.

Item is

Files

show Files

Locators

show
hide
Locator:
Link (Any fulltext)
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Ernst, J, Author
Hock, A, Author
Henning, A1, 2, Author           
Seifritz, E, Author
Boeker, H, Author
Grimm, S, Author
Affiliations:
1Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794              
2Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_2528692              

Content

show
hide
Free keywords: -
 Abstract: There is ample evidence that glucose metabolism in the pregenual anterior cingulate cortex (PACC) is increased in major depressive disorder (MDD), whereas it is still unknown whether glucose levels per se are also elevated. Elevated cerebrospinal fluid (CSF) lactate concentrations in MDD patients might indicate that increased glycolytical metabolization of glucose to lactate in astrocytes either alone or in conjunction with mitochondrial dysfunction results in an accumulation of lactate and contributes to pathophysiological mechanisms of MDD. However, until now, no study investigated in vivo PACC glucose and lactate levels in MDD. Proton magnetic resonance spectroscopy was therefore used to test the hypothesis that patients with MDD have increased PACC glucose and lactate levels. In 40 healthy and depressed participants, spectra were acquired from the PACC using a maximum echo J-resolved spectroscopy protocol. Results show significant increases of glucose and lactate in patients, which are also associated with depression severity. These findings indicate impaired brain energy metabolism in MDD with increased fraction of energy utilization via glycolysis and reduced mitochondrial oxidative clearance of lactate. Targeting these metabolic disturbances might affect the balance of metabolic pathways regulating neuronal energetics and result in an attenuation of the elevated basal activity of brain regions within the neural circuitry of depression.

Details

show
hide
Language(s):
 Dates: 2017-01
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1038/mp.2016.73
BibTex Citekey: ErnstHHSBG2016
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Molecular Psychiatry
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 22 (1) Sequence Number: - Start / End Page: 113 - 119 Identifier: -