English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  A parametric texture model based on deep convolutional features closely matches texture appearance for humans

Wallis, T., Funke, C., Ecker, A., Gatys, L., Wichmann, F., & Bethge, M. (2017). A parametric texture model based on deep convolutional features closely matches texture appearance for humans. Poster presented at 17th Annual Meeting of the Vision Sciences Society (VSS 2017), St. Pete Beach, FL, USA.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0000-C403-F Version Permalink: http://hdl.handle.net/21.11116/0000-0006-B4BD-A
Genre: Poster

Files

show Files

Locators

show
hide
Locator:
Link (Any fulltext)
Description:
-

Creators

show
hide
 Creators:
Wallis, TSA, Author
Funke, CM, Author
Ecker, AS, Author              
Gatys, LA, Author
Wichmann, FA, Author              
Bethge, M1, Author              
Affiliations:
1External Organizations, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Much of our visual environment consists of texture—“stuff” like cloth, bark or gravel as distinct from “things” like dresses, trees or paths—and we humans are adept at perceiving textures and their subtle variation. How does our visual system achieve this feat? Here we psychophysically evaluate a new parameteric model of texture appearance (the CNN texture model; Gatys et al., 2015) that is based on the features encoded by a deep convolutional neural network (deep CNN) trained to recognise objects in images (the VGG-19; Simonyan and Zisserman, 2015). By cumulatively matching the correlations of deep features up to a given layer (using up to five convolutional layers) we were able to evaluate models of increasing complexity. We used a three-alternative spatial oddity task to test whether model-generated textures could be discriminated from original natural textures under two viewing conditions: when test patches were briefly presented to the parafovea (“single fixation”) and when observers were able to make eye movements to all three patches (“inspection”). For 9 of the 12 source textures we tested, the models using more than three layers produced images that were indiscriminable from the originals even under foveal inspection. The venerable parameteric texture model of Portilla and Simoncelli (Portilla and Simoncelli, 2000) was also able to match the appearance of these textures in the single fixation condition, but not under inspection. Of the three source textures our model could not match, two contain strong periodicities. In a second experiment, we found that matching the power spectrum in addition to the deep features used above (Liu et al., 2016) greatly improved matches for these two textures. These results suggest that the features learned by deep CNNs encode statistical regularities of natural scenes that capture important aspects of material perception in humans.

Details

show
hide
Language(s):
 Dates: 2017-10
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1167/17.10.1081
BibTex Citekey: FunkeWEGWB2017
 Degree: -

Event

show
hide
Title: 17th Annual Meeting of the Vision Sciences Society (VSS 2017)
Place of Event: St. Pete Beach, FL, USA
Start-/End Date: 2017-05-19 - 2017-05-24

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Vision
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Charlottesville, VA : Scholar One, Inc.
Pages: - Volume / Issue: 17 (10) Sequence Number: - Start / End Page: 1081 Identifier: ISSN: 1534-7362
CoNE: https://pure.mpg.de/cone/journals/resource/111061245811050