English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Femtosecond response of polyatomic molecules to ultra-intense hard X-rays

Rudenko, A., Inhester, L., Hanasaki, K., Li, X., Robatjazi, S. J., Erk, B., et al. (2017). Femtosecond response of polyatomic molecules to ultra-intense hard X-rays. Nature, 546(7656), 129-+. doi:10.1038/nature22373.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Rudenko, A.1, Author
Inhester, L.1, Author
Hanasaki, K.1, Author
Li, X.1, Author
Robatjazi, S. J.1, Author
Erk, B.1, Author
Boll, Rebecca2, Author           
Toyota, K.1, Author
Hao, Y.1, Author
Vendrell, O.1, Author
Bomme, C.1, Author
Savelyev, E.1, Author
Rudek, B.1, Author
Foucar, L.1, Author
Southworth, S. H.1, Author
Lehmann, C. S.1, Author
Kraessig, B.1, Author
Marchenko, T.1, Author
Simon, M.1, Author
Ueda, K.1, Author
Ferguson, K. R.1, AuthorBucher, M.1, AuthorGorkhover, T.1, AuthorCarron, S.1, AuthorAlonso-Mori, R.1, AuthorKoglin, J. E.1, AuthorCorrea, J.1, AuthorWilliams, G. J.1, AuthorBoutet, S.1, AuthorYoung, L.1, AuthorBostedt, C.1, AuthorSon, S. -K.1, AuthorSantra, R.1, AuthorRolles, D.1, Author more..
Affiliations:
1external, ou_persistent22              
2Division Prof. Dr. Thomas Pfeifer, MPI for Nuclear Physics, Max Planck Society, ou_2025284              

Content

show
hide
Free keywords: -
 Abstract: X-ray free-electron lasers enable the investigation of the structure and dynamics of diverse systems, including atoms, molecules, nanocrystals and single bioparticles, under extreme conditions(1-7). Many imaging applications that target biological systems and complex materials use hard X-ray pulses with extremely high peak intensities (exceeding 10(20) watts per square centimetre)(3,5). However, fundamental investigations have focused mainly on the individual response of atoms and small molecules using soft X-rays with much lower intensities(8-17). Studies with intense X-ray pulses have shown that irradiated atoms reach a very high degree of ionization, owing to multiphoton absorption(8,12,13,18), which in a heteronuclear molecular system occurs predominantly locally on a heavy atom (provided that the absorption cross-section of the heavy atom is considerably larger than those of its neighbours) and is followed by efficient redistribution of the induced charge(14-17,19,20). In serial femtosecond crystallography of biological objects-an application of X-ray free-electron lasers that greatly enhances our ability to determine protein structure(2,3)-the ionization of heavy atoms increases the local radiation damage that is seen in the diffraction patterns of these objects(21,22) and has been suggested as a way of phasing the diffraction data(23,24). On the basis of experiments using either soft or less-intense hard X-rays(14-19,25), it is thought that the induced charge and associated radiation damage of atoms in polyatomic molecules can be inferred from the charge that is induced in an isolated atom under otherwise comparable irradiation conditions. Here we show that the femtosecond response of small polyatomic molecules that contain one heavy atom to ultra-intense (with intensities approaching 10(20) watts per square centimetre), hard (with photon energies of 8.3 kiloelectronvolts) X-ray pulses is qualitatively different: our experimental and modelling results establish that, under these conditions, the ionization of a molecule is considerably enhanced compared to that of an individual heavy atom with the same absorption cross-section. This enhancement is driven by ultrafast charge transfer within the molecule, which refills the core holes that are created in the heavy atom, providing further targets for inner-shell ionization and resulting in the emission of more than 50 electrons during the X-ray pulse. Our results demonstrate that efficient modelling of X-ray-driven processes in complex systems at ultrahigh intensities is feasible.

Details

show
hide
Language(s):
 Dates: 2017
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1038/nature22373
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature
  Abbreviation : Nature
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Nature Publishing Group
Pages: - Volume / Issue: 546 (7656) Sequence Number: - Start / End Page: 129 - + Identifier: ISSN: 0028-0836
CoNE: https://pure.mpg.de/cone/journals/resource/954925427238