English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Air quality modelling in the summer over the eastern Mediterranean using WRF-Chem: chemistry and aerosol mechanism intercomparison

Georgiou, G. K., Christoudias, T., Proestos, Y., Kushta, J., Hadjinicolaou, P., & Lelieveld, J. (2018). Air quality modelling in the summer over the eastern Mediterranean using WRF-Chem: chemistry and aerosol mechanism intercomparison. Atmospheric Chemistry and Physics, 18(3), 1555-1571. doi:10.5194/acp-18-1555-2018.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Georgiou, George K.1, Author
Christoudias, Theodoros1, Author
Proestos, Yiannis1, Author
Kushta, Jonilda1, Author
Hadjinicolaou, Panos1, Author
Lelieveld, J.2, Author           
Affiliations:
1external, ou_persistent22              
2Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_1826285              

Content

show
hide
Free keywords: -
 Abstract: We employ the WRF-Chem model to study summertime air pollution, the intense photochemical activity and their impact on air quality over the eastern Mediterranean. We utilize three nested domains with horizontal resolutions of 80, 16 and 4 km, with the finest grid focusing on the island of Cyprus, where the CYPHEX campaign took place in July 2014. Anthropogenic emissions are based on the EDGAR HTAP global emission inventory, while dust and biogenic emissions are calculated online. Three simulations utilizing the CBMZ-MOSAIC, MOZART-MOSAIC, and RADM2-MADE/SORGAM gas-phase and aerosol mechanisms are performed. The results are compared with measurements from a dense observational network of 14 ground stations in Cyprus. The model simulates T2 m, Psurf, and WD10 m accurately, with minor differences in WS10 m between model and observations at coastal and mountainous stations attributed to limitations in the representation of the complex topography in the model. It is shown that the south-eastern part of Cyprus is mostly affected by emissions from within the island, under the dominant (60 %) westerly flow during summertime. Clean maritime air from the Mediterranean can reduce concentrations of local air pollutants over the region during westerlies. Ozone concentrations are overestimated by all three mechanisms (9 %  ≤  NMB  ≤  23 %) with the smaller mean bias (4.25 ppbV) obtained by the RADM2-MADE/SORGAM mechanism. Differences in ozone concentrations can be attributed to the VOC treatment by the three mechanisms. The diurnal variability of pollution and ozone precursors is not captured (hourly correlation coefficients for O3  ≤  0.29). This might be attributed to the underestimation of NOx concentrations by local emissions by up to 50 %. For the fine particulate matter (PM2.5), the lowest mean bias (9 µg m−3) is obtained with the RADM2-MADE/SORGAM mechanism, with overestimates in sulfate and ammonium aerosols. Overestimation of sulfate aerosols by this mechanism may be linked to the SO2 oxidation in clouds. The MOSAIC aerosol mechanism overestimates PM2.5 concentrations by up to 22 µg m−3 due to a more pronounced dust component compared to the other two mechanisms, mostly influenced by the dust inflow from the global model. We conclude that all three mechanisms are very sensitive to boundary conditions from the global model for both gas-phase and aerosol pollutants, in particular dust and ozone.

Details

show
hide
Language(s): eng - English
 Dates: 2018
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: ISI: 000424049100006
DOI: 10.5194/acp-18-1555-2018
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Atmospheric Chemistry and Physics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Katlenburg-Lindau, Germany : European Geosciences Union
Pages: - Volume / Issue: 18 (3) Sequence Number: - Start / End Page: 1555 - 1571 Identifier: ISSN: 1680-7316
CoNE: https://pure.mpg.de/cone/journals/resource/111030403014016