English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Observing and modeling the poloidal and toroidal fields of the solar dynamo

Cameron, R. H., Duvall, T., Schüssler, M., & Schunker, H. (2018). Observing and modeling the poloidal and toroidal fields of the solar dynamo. Astronomy and Astrophysics, 609: A56. doi:10.1051/0004-6361/201731481.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Cameron, Robert H.1, 2, Author              
Duvall, Thomas1, Author              
Schüssler, Manfred2, Author              
Schunker, Hannah1, Author              
Affiliations:
1Department Solar and Stellar Interiors, Max Planck Institute for Solar System Research, Max Planck Society, ou_1832287              
2Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society, Justus-von-Liebig-Weg 3, 37077 Göttingen, DE, ou_1832289              

Content

show
hide
Free keywords: Sun: magnetic fields
 Abstract: Context. The solar dynamo consists of a process that converts poloidal magnetic field to toroidal magnetic field followed by a process that creates new poloidal field from the toroidal field. Aims. Our aim is to observe the poloidal and toroidal fields relevant to the global solar dynamo and to see if their evolution is captured by a Babcock-Leighton dynamo. Methods. We used synoptic maps of the surface radial field from the KPNSO/VT and SOLIS observatories, to construct the poloidal field as a function of time and latitude; we also used full disk images from Wilcox Solar Observatory and SOHO/MDI to infer the longitudinally averaged surface azimuthal field. We show that the latter is consistent with an estimate of the longitudinally averaged surface azimuthal field due to flux emergence and therefore is closely related to the subsurface toroidal field. Results. We present maps of the poloidal and toroidal magnetic fields of the global solar dynamo. The longitude-averaged azimuthal field observed at the surface results from flux emergence. At high latitudes this component follows the radial component of the polar fields with a short time lag of between 1−3 years. The lag increases at lower latitudes. The observed evolution of the poloidal and toroidal magnetic fields is described by the (updated) Babcock-Leighton dynamo model.

Details

show
hide
Language(s): eng - English
 Dates: 2018-03-132018
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1051/0004-6361/201731481
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Astronomy and Astrophysics
  Other : Astron. Astrophys.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Berlin : Springer-Verlag
Pages: - Volume / Issue: 609 Sequence Number: A56 Start / End Page: - Identifier: ISSN: 0004-6361
CoNE: https://pure.mpg.de/cone/journals/resource/954922828219_1