Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Modeling the Hydrological Cycle in the Atmosphere of Mars: Influence of a Bimodal Size Distribution of Aerosol Nucleation Particles

Shaposhnikov, D. S., Rodin, A. V., Medvedev, A. S., Fedorova, A. A., Kuroda, T., & Hartogh, P. (2018). Modeling the Hydrological Cycle in the Atmosphere of Mars: Influence of a Bimodal Size Distribution of Aerosol Nucleation Particles. Journal of Geophysical Research: Planets, 123(2), 508-526. doi:10.1002/2017JE005384.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Shaposhnikov, Dmitry S., Autor
Rodin, Alexander V., Autor
Medvedev, Alexander S.1, Autor           
Fedorova, Anna A., Autor
Kuroda, Takeshi, Autor
Hartogh, Paul1, Autor           
Affiliations:
1Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society, ou_1832288              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 MPIS_PROJECTS: ExoMars: ACS
 MPIS_GROUPS: Planetary Atmospheres
 Zusammenfassung: We present a new implementation of the hydrological cycle scheme into a general circulation model of the Martian atmosphere. The model includes a semi-Lagrangian transport scheme for water vapor and ice and accounts for microphysics of phase transitions between them. The hydrological scheme includes processes of saturation, nucleation, particle growth, sublimation, and sedimentation under the assumption of a variable size distribution. The scheme has been implemented into the Max Planck Institute Martian general circulation model and tested assuming monomodal and bimodal lognormal distributions of ice condensation nuclei. We present a comparison of the simulated annual variations, horizontal and vertical distributions of water vapor, and ice clouds with the available observations from instruments on board Mars orbiters. The accounting for bimodality of aerosol particle distribution improves the simulations of the annual hydrological cycle, including predicted ice clouds mass, opacity, number density, and particle radii. The increased number density and lower nucleation rates bring the simulated cloud opacities closer to observations. Simulations show a weak effect of the excess of small aerosol particles on the simulated water vapor distributions.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2018-03-142018
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1002/2017JE005384
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Geophysical Research: Planets
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, D.C. : American Geophysical Union
Seiten: - Band / Heft: 123 (2) Artikelnummer: - Start- / Endseite: 508 - 526 Identifikator: ISSN: 2156-2202
ISSN: 2169-9100