English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Greedy Algorithms for Cone Constrained Optimization with Convergence Guarantees

Locatello, F., Tschannen, M., Rätsch, G., & Jaggi, M. (2018). Greedy Algorithms for Cone Constrained Optimization with Convergence Guarantees. In I. Guyon, & S. Bengio (Eds.), Advances in Neural Information Processing Systems 30 (pp. 774-785). Red Hook, NY: Curran Associates, Inc. Retrieved from https://papers.nips.cc/paper/6679-greedy-algorithms-for-cone-constrained-optimization-with-convergence-guarantees.

Item is

Basic

show hide
Genre: Conference Paper

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Locatello, F.1, Author           
Tschannen, M.2, Author
Rätsch, G.2, Author
Jaggi, M.2, Author
Affiliations:
1Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society, ou_1497647              
2External Organizations, ou_persistent22              

Content

show
hide
Free keywords: Abt. Schölkopf
 Abstract: -

Details

show
hide
Language(s): eng - English
 Dates: 20172018-06
 Publication Status: Issued
 Pages: 12
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show
hide
Title: 31st Annual Conference on Neural Information Processing Systems (NIPS 2017)
Place of Event: Long Beach, CA
Start-/End Date: 2017-12-04 - 2017-12-09

Legal Case

show

Project information

show

Source 1

show
hide
Title: Advances in Neural Information Processing Systems 30
  Subtitle : 31st Annual Conference on Neural Information Processing Systems (NIPS 2017)
Source Genre: Proceedings
 Creator(s):
Guyon, I.1, Editor
von Luxburg, U.2, Author           
Bengio, S.1, Editor
Wallach, H.1, Author
Fergus, R.1, Author
Vishwanathan, S.1, Author
Garnett, R.1, Author
Affiliations:
1 External Organizations, ou_persistent22            
2 Max Planck Fellow Group Statistical Learning Theory, Max Planck Institute for Intelligent Systems, Max Planck Society, ou_3031011            
Publ. Info: Red Hook, NY : Curran Associates, Inc.
Pages: - Volume / Issue: 2 Sequence Number: - Start / End Page: 774 - 785 Identifier: URI: https://papers.nips.cc/paper/2017
ISBN: 978-1-5108-6096-4