English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Cellular control of cortical actin nucleation.

Bovellan, M., Romeo, Y., Biro, M., Boden, A., Chugh, P., Yonis, A., et al. (2014). Cellular control of cortical actin nucleation. Current Biology: CB, 24(14), 1628-1635.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Bovellan, Miia, Author
Romeo, Yves, Author
Biro, Mate1, Author           
Boden, Annett1, Author           
Chugh, Priyamvada1, Author           
Yonis, Amina, Author
Vaghela, Malti, Author
Fritzsche, Marco, Author
Moulding, Dale, Author
Thorogate, Richard, Author
Jégou, Antoine, Author
Thrasher, Adrian J, Author
Romet-Lemonne, Guillaume, Author
Roux, Philippe P, Author
Paluch, Ewa1, Author           
Charras, Guillaume2, Author
Affiliations:
1Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society, ou_2340692              
2Max Planck Society, ou_persistent13              

Content

show
hide
Free keywords: -
 Abstract: The contractile actin cortex is a thin layer of actin, myosin, and actin-binding proteins that subtends the membrane of animal cells. The cortex is the main determinant of cell shape and plays a fundamental role in cell division [1-3], migration [4], and tissue morphogenesis [5]. For example, cortex contractility plays a crucial role in amoeboid migration of metastatic cells [6] and during division, where its misregulation can lead to aneuploidy [7]. Despite its importance, our knowledge of the cortex is poor, and even the proteins nucleating it remain unknown, though a number of candidates have been proposed based on indirect evidence [8-15]. Here, we used two independent approaches to identify cortical actin nucleators: a proteomic analysis using cortex-rich isolated blebs, and a localization/small hairpin RNA (shRNA) screen searching for phenotypes with a weakened cortex or altered contractility. This unbiased study revealed that two proteins generated the majority of cortical actin: the formin mDia1 and the Arp2/3 complex. Each nucleator contributed a similar amount of F-actin to the cortex but had very different accumulation kinetics. Electron microscopy examination revealed that each nucleator affected cortical network architecture differently. mDia1 depletion led to failure in division, but Arp2/3 depletion did not. Interestingly, despite not affecting division on its own, Arp2/3 inhibition potentiated the effect of mDia1 depletion. Our findings indicate that the bulk of the actin cortex is nucleated by mDia1 and Arp2/3 and suggest a mechanism for rapid fine-tuning of cortex structure and mechanics by adjusting the relative contribution of each nucleator.

Details

show
hide
Language(s):
 Dates: 2014
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: eDoc: 705675
Other: 5873
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Current Biology : CB
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 24 (14) Sequence Number: - Start / End Page: 1628 - 1635 Identifier: -