Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Multiparametric optical analysis of mitochondrial redox signals during neuronal physiology and pathology in vivo.

Breckwoldt, M. O., Pfister, F. M. J., Bradley, P. M., Marinković, P., Williams, P. R., Brill, M. S., et al. (2014). Multiparametric optical analysis of mitochondrial redox signals during neuronal physiology and pathology in vivo. Nature Medicine, 20(5), 555-560.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Breckwoldt, Michael O, Autor
Pfister, Franz M J, Autor
Bradley, Peter M, Autor
Marinković, Petar1, Autor
Williams, Philip R, Autor
Brill, Monika S, Autor
Plomer, Barbara, Autor
Schmalz, Anja, Autor
Clair, Daret K St, Autor
Naumann, Ronald2, Autor           
Griesbeck, Oliver, Autor
Schwarzländer, Markus, Autor
Godinho, Leanne, Autor
Bareyre, Florence M, Autor
Dick, Tobias P, Autor
Kerschensteiner, Martin1, Autor
Misgeld, Thomas1, Autor
Affiliations:
1Max Planck Society, ou_persistent13              
2Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society, ou_2340692              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Mitochondrial redox signals have a central role in neuronal physiology and disease. Here we describe a new optical approach to measure fast redox signals with single-organelle resolution in living mice that express genetically encoded redox biosensors in their neuronal mitochondria. Moreover, we demonstrate how parallel measurements with several biosensors can integrate these redox signals into a comprehensive characterization of mitochondrial function. This approach revealed that axonal mitochondria undergo spontaneous 'contractions' that are accompanied by reversible redox changes. These contractions are amplified by neuronal activity and acute or chronic neuronal insults. Multiparametric imaging reveals that contractions constitute respiratory chain-dependent episodes of depolarization coinciding with matrix alkalinization, followed by uncoupling. In contrast, permanent mitochondrial damage after spinal cord injury depends on calcium influx and mitochondrial permeability transition. Thus, our approach allows us to identify heterogeneity among physiological and pathological redox signals, correlate such signals to functional and structural organelle dynamics and dissect the underlying mechanisms.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2014
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: eDoc: 705645
Anderer: 5738
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nature Medicine
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 20 (5) Artikelnummer: - Start- / Endseite: 555 - 560 Identifikator: -