English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Fibrillin-2b regulates endocardial morphogenesis in zebrafish.

Mellman, K., Huisken, J., Dinsmore, C., Hoppe, C., & Stainier, D. Y. (2012). Fibrillin-2b regulates endocardial morphogenesis in zebrafish. Developmental Biology, 372(1), 111-119.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Mellman, Katharine, Author
Huisken, Jan1, Author           
Dinsmore, Colin, Author
Hoppe, Cornelia1, Author           
Stainier, Didier Y.R.2, Author
Affiliations:
1Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society, ou_2340692              
2Max Planck Society, ou_persistent13              

Content

show
hide
Free keywords: -
 Abstract: scotch tape (sco) is a zebrafish cardiac mutant initially proposed to exhibit a reduced amount of cardiac jelly, the extracellular matrix between the myocardial and endocardial layers. We analyzed sco(te382) mutant hearts in detail using both selective plane illumination microscopy (SPIM) and transmission electron microscopy (TEM), and observed a fascinating endocardial defect. Time-lapse SPIM imaging of wild-type and mutant embryos revealed significant and dynamic gaps between endocardial cells during development. Although these gaps close in wild-type animals, they fail to close in the mutants, ultimately leading to a near complete absence of endocardial cells in the atrial chamber by the heart looping stage. TEM analyses confirm the presence of gaps between endocardial cells in sco mutants, allowing the apparent leakage of cardiac jelly into the lumen. High-resolution mapping places the sco(te382) mutation within the fbn2b locus, which encodes the extracellular matrix protein Fibrillin 2b (OMIM ID: 121050). Complementation and further phenotypic analyses confirm that sco is allelic to puff daddy(gw1) (pfd(gw1)), a null mutant in fbn2b, and that sco(te382) is a hypomorphic allele of fbn2b. fbn2b belongs to a family of genes responsible for the assembly of microfibrils throughout development, and is essential for microfibril structural integrity. In sco(te382) mutants, Fbn2b is disabled by a missense mutation in a highly conserved cbEGF domain, which likely interferes with protein folding. Integrating data obtained from microscopy and molecular biology, we posit that this mutation impacts the rigidity of Fbn2b, imparting a structural defect that weakens endocardial adhesion thereby resulting in perforated endocardium.

Details

show
hide
Language(s):
 Dates: 2012
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: eDoc: 645333
Other: 5061
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Developmental Biology
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 372 (1) Sequence Number: - Start / End Page: 111 - 119 Identifier: -