English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
EndNote (UTF-8)
 
DownloadE-Mail
  Measurement of the membrane curvature preference of phospholipids reveals only weak coupling between lipid shape and leaflet curvature

Kamal, M. M., Mills, D., Grzybek, M., & Howard, J. (2009). Measurement of the membrane curvature preference of phospholipids reveals only weak coupling between lipid shape and leaflet curvature. Proceedings of the National Academy of Sciences of the United States of America, 106(52), 22245-22250.

Item is

Files

show Files

Locators

show

Creators

hide
 Creators:
Kamal, Marzuk M, Author
Mills, Deryck, Author
Grzybek, Michal1, Author           
Howard, Jonathon1, Author           
Affiliations:
1Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society, ou_2340692              

Content

hide
Free keywords: -
 Abstract: In biological processes, such as fission, fusion and trafficking, it has been shown that lipids of different shapes are sorted into regions with different membrane curvatures. This lipid sorting has been hypothesized to be due to the coupling between the membrane curvature and the lipid's spontaneous curvature, which is related to the lipid's molecular shape. On the other hand, theoretical predictions and simulations suggest that the curvature preference of lipids, due to shape alone, is weaker than that observed in biological processes. To distinguish between these different views, we have directly measured the curvature preferences of several lipids by using a fluorescence-based method. We prepared small unilamellar vesicles of different sizes with a mixture of egg-PC and a small mole fraction of N-nitrobenzoxadiazole (NBD)-labeled phospholipids or lysophospholipids of different chain lengths and saturation, and measured the NBD equilibrium distribution across the bilayer. We observed that the transverse lipid distributions depended linearly on membrane curvature, allowing us to measure the curvature coupling coefficient. Our measurements are in quantitative agreement with predictions based on earlier measurements of the spontaneous curvatures of the corresponding nonfluorescent lipids using X-ray diffraction. We show that, though some lipids have high spontaneous curvatures, they nevertheless showed weak curvature preferences because of the low values of the lipid molecular areas. The weak curvature preference implies that the asymmetric lipid distributions found in biological membranes are not likely to be driven by the spontaneous curvature of the lipids, nor are lipids discriminating sensors of membrane curvature.

Details

hide
Language(s):
 Dates: 2009
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: eDoc: 463234
Other: 1377
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

hide
Title: Proceedings of the National Academy of Sciences of the United States of America
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 106 (52) Sequence Number: - Start / End Page: 22245 - 22250 Identifier: -