English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Neural stem cells and neurogenesis in the adult zebrafish brain: Origin, proliferation dynamics, migration and cell fate

Grandel, H., Kaslin, J., Ganz, J., Wenzel, I., & Brand, M. (2006). Neural stem cells and neurogenesis in the adult zebrafish brain: Origin, proliferation dynamics, migration and cell fate. Developmental Biology, 295(1), 263-277.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Grandel, Heiner1, Author           
Kaslin, Jan1, Author           
Ganz, Julia2, Author
Wenzel, Isabell1, Author           
Brand, Michael1, Author           
Affiliations:
1Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society, ou_2340692              
2Max Planck Society, ou_persistent13              

Content

show
hide
Free keywords: -
 Abstract: Lifelong neurogenesis in vertebrates relies on stem cells producing proliferation zones that contain neuronal precursors with distinct fates. Proliferation zones in the adult zebrafish brain are located in distinct regions along its entire anterior-posterior axis. We show a previously unappreciated degree of conservation of brain proliferation patterns among teleosts, suggestive of a teleost ground plan. Pulse chase labeling of proliferating populations reveals a centrifugal movement of cells away from their places of birth into the surrounding mantle zone. We observe tangential migration of cells born in the ventral telencephalon, but only a minor rostral migratory stream to the olfactory bulb. In contrast, the lateral telencephalic area, a domain considered homologous to the mammalian dentate gyrus, shows production of interneurons and migration as in mammals. After a 46-day chase, newborn highly mobile cells have moved into nuclear areas surrounding the proliferation zones. They often show HuC/D immunoreactivity but importantly also more specific neuronal identities as indicated by immunoreactivity for tyrosine hydroxylase, serotonin and parvalbumin. Application of a second proliferation marker allows us to recognize label-retaining, actively cycling cells that remain in the proliferation zones. The latter population meets two key criteria of neural stem cells: label retention and self renewal.

Details

show
hide
Language(s):
 Dates: 2006
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: eDoc: 311186
Other: 569
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Developmental Biology
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 295 (1) Sequence Number: - Start / End Page: 263 - 277 Identifier: -