English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Integrity of the midbrain region is required to maintain the diencephalic-mesencephalic boundary in zebrafish no isthmus/pax2.1 mutants.

Scholpp, S., & Brand, M. (2003). Integrity of the midbrain region is required to maintain the diencephalic-mesencephalic boundary in zebrafish no isthmus/pax2.1 mutants. Developmental Dynamics, 228(3), 313-322.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Scholpp, Steffen1, Author           
Brand, Michael1, Author           
Affiliations:
1Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society, ou_2340692              

Content

show
hide
Free keywords: -
 Abstract: Initial anterior-posterior patterning of the neural tube into forebrain, midbrain, and hindbrain primordia occurs already during gastrulation, in response to signals patterning the gastrula embryo. After the initial establishment, further development within each brain part is thought to proceed largely independently of the others. However, mechanisms should exist that ensure proper delineation of brain subdivisions also at later stages; such mechanisms are, however, poorly understood. In zebrafish no isthmus mutant embryos, inactivation of the pax2.1 gene leads to a failure of the midbrain and isthmus primordium to develop normally from the gastrula stage onward (Lun and Brand [1998] Development 125:3049-3062). Here, we report that, after the initially correct establishment during gastrulation stages, the neighbouring forebrain primordium and, partially, the hindbrain primordium expand into the misspecified midbrain territory in no isthmus mutant embryos. The expansion is particularly evident for the posterior part of the diencephalon and less so for the first rhombomeric segment, the territories immediately abutting the midbrain/isthmus primordium. The nucleus of the posterior commissure is expanded in size, and marker genes of the forebrain and rhombomere 1 expand progressively into the misspecified midbrain primordium, eventually resulting in respecification of the midbrain primordium. We therefore suggest that the genetic program controlled by Pax2.1 is not only involved in initiating but also in maintaining the identity of midbrain and isthmus cells to prevent them from assuming a forebrain or hindbrain fate.

Details

show
hide
Language(s):
 Dates: 2003
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: eDoc: 190393
Other: 348
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Developmental Dynamics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 228 (3) Sequence Number: - Start / End Page: 313 - 322 Identifier: -