English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Early endosomal regulation of Smad-dependent signaling in endothelial cells

Panopoulou, E., Gillooly, D. J., Wrana, J. L., Zerial, M., Stenmark, H., Murphy, C., et al. (2002). Early endosomal regulation of Smad-dependent signaling in endothelial cells. Journal of Biological Chemistry, 277(20), 18046-18052.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Panopoulou, Ekaterini, Author
Gillooly, David J., Author
Wrana, Jeffrey L., Author
Zerial, Marino1, Author           
Stenmark, Harald, Author
Murphy, Carol, Author
Fotsis, Theodore, Author
Affiliations:
1Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society, ou_2340692              

Content

show
hide
Free keywords: -
 Abstract: Transforming growth factor beta (TGFbeta) receptors require SARA for phosphorylation of the downstream transducing Smad proteins. SARA, a FYVE finger protein, binds to membrane lipids suggesting that activated receptors may interact with downstream signaling molecules at discrete endocytic locations. In the present study, we reveal a critical role for the early endocytic compartment in regulating Smad-dependent signaling. Not only is SARA localized on early endosomes, but also its minimal FYVE finger sequence is sufficient for early endosomal targeting. Expression of a SARA mutant protein lacking the FYVE finger inhibits downstream activin A signaling in endothelial cells. Moreover, a dominant-negative mutant of Rab5, a crucial protein for early endosome dynamics, causes phosphorylation and nuclear translocation of Smads leading to constitutive (i.e. ligand independent) transcriptional activation of a Smad-dependent promoter in endothelial cells. As inhibition of endocytosis using the K44A negative mutant of dynamin and RN-tre did not lead to activation of Smad-dependent transcription, the effects of the dominant-negative Rab5 are likely to be a consequence of altered membrane trafficking of constitutively formed TGFbeta/activin type I/II receptor complexes at the level of early endosomes. The results suggest an important interconnection between early endosomal dynamics and TGFbeta/activin signal transduction pathways.

Details

show
hide
Language(s):
 Dates: 2002
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: eDoc: 27014
Other: 133
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Biological Chemistry
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 277 (20) Sequence Number: - Start / End Page: 18046 - 18052 Identifier: -