Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Classical Molecular Dynamics with Mobile Protons

Lazaridis, T., & Hummer, G. (2017). Classical Molecular Dynamics with Mobile Protons. Journal of Chemical Information and Modeling, 57(11), 2833-2845. doi:10.1021/acs.jcim.7b00603.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Lazaridis, Themis1, 2, Autor
Hummer, Gerhard3, Autor                 
Affiliations:
1Department of Chemistry, City College of New York/CUNY, 160 Convent Avenue, New York, New York 10031, United States, ou_persistent22              
2Graduate Programs in Chemistry, Biochemistry & Physics, Graduate Center, City University of New York, 365 Fifth Ave, New York, New York 10016, United States, ou_persistent22              
3Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society, ou_2068292              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: An important limitation of standard classical molecular dynamics simulations is the inability to make or break chemical bonds. This restricts severely our ability to study processes that involve even the simplest of chemical reactions, the transfer of a proton. Existing approaches for allowing proton transfer in the context of classical mechanics are rather cumbersome and have not achieved widespread use and routine status. Here we reconsider the combination of molecular dynamics with periodic stochastic proton hops. To ensure computational efficiency, we propose a non-Boltzmann acceptance criterion that is heuristically adjusted to maintain the correct or desirable thermodynamic equilibria between different protonation states and proton transfer rates. Parameters are proposed for hydronium, Asp, Glu, and His. The algorithm is implemented in the program CHARMM and tested on proton diffusion in bulk water and carbon nanotubes and on proton conductance in the gramicidin A channel. Using hopping parameters determined from proton diffusion in bulk water, the model reproduces the enhanced proton diffusivity in carbon nanotubes and gives a reasonable estimate of the proton conductance in gramicidin A.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2017-10-102017-11-022017-11-27
 Publikationsstatus: Erschienen
 Seiten: 13
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1021/acs.jcim.7b00603
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Chemical Information and Modeling
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, D.C. : American Chemical Society
Seiten: - Band / Heft: 57 (11) Artikelnummer: - Start- / Endseite: 2833 - 2845 Identifikator: ISSN: 1549-9596
CoNE: https://pure.mpg.de/cone/journals/resource/954925465222