Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Nonlinear Dynamics Analysis of a Self-Organizing Recurrent Neural Network: Chaos Waning

Eser, J., Zheng, P., & Triesch, J. (2014). Nonlinear Dynamics Analysis of a Self-Organizing Recurrent Neural Network: Chaos Waning. PLoS One, 9(1), 1-9. doi:10.1371/journal.pone.0086962.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Eser, J, Autor
Zheng, Pengsheng1, Autor           
Triesch, J, Autor
Affiliations:
1Frankfurt Institute for Advanced Studies, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Self-organization is thought to play an important role in structuring nervous systems. It frequently arises as a consequence of plasticity mechanisms in neural networks: connectivity determines network dynamics which in turn feed back on network structure through various forms of plasticity. Recently, self-organizing recurrent neural network models (SORNs) have been shown to learn non-trivial structure in their inputs and to reproduce the experimentally observed statistics and fluctuations of synaptic connection strengths in cortex and hippocampus. However, the dynamics in these networks and how they change with network evolution are still poorly understood. Here we investigate the degree of chaos in SORNs by studying how the networks' self-organization changes their response to small perturbations. We study the effect of perturbations to the excitatory-to-excitatory weight matrix on connection strengths and on unit activities. We find that the network dynamics, characterized by an estimate of the maximum Lyapunov exponent, becomes less chaotic during its self-organization, developing into a regime where only few perturbations become amplified. We also find that due to the mixing of discrete and (quasi-)continuous variables in SORNs, small perturbations to the synaptic weights may become amplified only after a substantial delay, a phenomenon we propose to call deferred chaos.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2014-01
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1371/journal.pone.0086962
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: PLoS One
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: San Francisco, CA : Public Library of Science
Seiten: - Band / Heft: 9 (1) Artikelnummer: - Start- / Endseite: 1 - 9 Identifikator: ISSN: 1932-6203
eDoc: e86962
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000277850