Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Strontium-modification of porous scaffolds from mineralized collagen for potential use in bone defect therapy

Quade, M., Schumacher, M., Bernhardt, A., Lode, A., Kampschulte, M., Voss, A., et al. (2018). Strontium-modification of porous scaffolds from mineralized collagen for potential use in bone defect therapy. Materials Science & Engineering C, 84, 159-167. doi:10.1016/j.msec.2017.11.038.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Quade, Mandy1, Autor
Schumacher, Matthias1, Autor
Bernhardt, Anne1, Autor
Lode, Anja1, Autor
Kampschulte, Marian1, Autor
Voss, Andrea1, Autor
Simon, Paul2, Autor           
Uckermann, Ortrud1, Autor
Kirsch, Matthias1, Autor
Gelinsky, Michael1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Paul Simon, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863418              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The present study describes the development and characterization of strontium(II)-modified biomimetic scaffolds based on mineralized collagen type I as potential biomaterial for the local treatment of defects in systemically impaired (e.g. osteoporotic) bone. In contrast to already described collagen/hydroxyapatite nanocomposites calcium was substituted with strontium to the extent of 25, 50, 75 and 100 mol% by substituting the CaCl2-stock solution (0.1 M) with SrCl2 (0.1 M) during the scaffold synthesis. Simultaneous fibrillation and mineralization of collagen led to the formation of collagen-mineral nanocomposites with mineral phases shifting from nanocrystalline hydroxyapatite (Sr0) over poorly crystalline Sr-rich phases towards a mixed mineral phase (Sr100), consisting of an amorphous strontium phosphate (identified as Collin's salt, Sr6H3(PO4)5 ∗ 2 H2O, CS) and highly crystalline strontium hydroxyapatite (Sr5(PO4)3OH, SrHA). The formed mineral phases were characterized by transmission electron microscopy (TEM) and RAMAN spectroscopy. All collagen/mineral nanocomposites with graded strontium content were processed to scaffolds exhibiting an interconnected porosity suitable for homogenous cell seeding in vitro. Strontium ions (Sr2 +) were released in a sustained manner from the modified scaffolds, with a clear correlation between the released Sr2 + concentration and the degree of Sr-substitution. The accumulated specific Sr2 + release over the course of 28 days reached 141.2 μg (~ 27 μg mg− 1) from Sr50 and 266.1 μg (~ 35 μg mg− 1) from Sr100, respectively. Under cell culture conditions this led to maximum Sr2 + concentrations of 0.41 mM (Sr50) and 0.73 mM (Sr100) measured on day 1, which declined to 0.08 mM and 0.16 mM, respectively, at day 28. Since Sr2 + concentrations in this range are known to have an osteo-anabolic effect, these scaffolds are promising biomaterials for the clinical treatment of defects in systemically impaired bone.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2018-03-012018-03-01
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 000428482700018
DOI: 10.1016/j.msec.2017.11.038
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Materials Science & Engineering C
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Lausanne, Switzerland : Elsevier
Seiten: - Band / Heft: 84 Artikelnummer: - Start- / Endseite: 159 - 167 Identifikator: ISSN: 0928-4931
CoNE: https://pure.mpg.de/cone/journals/resource/954926245533_1