English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Information theoretic analysis of neural populations

Boettcher, A., & Bethge, M. (2014). Information theoretic analysis of neural populations. Poster presented at Bernstein Conference 2014, Göttingen, Germany.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Boettcher, A, Author
Bethge, Matthias1, 2, Author           
Affiliations:
1Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497805              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: The information of the stimulus variable S in a population of n observed neurons R0…Rn can be measured using the mutual information I(S:R0…Rn). In order to gain a deeper understanding about the stimulus encoding in the neural population the question arises how to decompose the mutual information. A decomposition may reveal sets of neurons that share the same information about the stimulus, or sets of neurons that encode information synergistically or a single neurons that may encode information about the stimulus that is not present in any of the other observed neurons. There are several properties that seem obviously necessary to hold for a mutual information decomposition. But these properties alone do not provide enough constraints to result in a unique solution and it is not clear how to resolve for this ambiguity. Several approaches have been suggested recently ([Williams2010], [Harder2013], [Griffith2014]) but we find that all of them suffer from certain caveats. Here, we introduce a new approach how to decompose the mutual information of two different neural populations with a stimulus into independent, unique, and synergistic components. We demonstrate its strength compared to previously proposed decompositions and present several examples that corroborate its usefulness. In particular, we believe the decomposition can serve as a useful relaxation to the problem of causality estimation.

Details

show
hide
Language(s):
 Dates: 2014-09
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.12751/nncn.bc2014.0025
BibTex Citekey: BoettcherB2014
 Degree: -

Event

show
hide
Title: Bernstein Conference 2014
Place of Event: Göttingen, Germany
Start-/End Date: -

Legal Case

show

Project information

show

Source 1

show
hide
Title: Bernstein Conference 2014
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: 29 - 30 Identifier: -