Help Privacy Policy Disclaimer
  Advanced SearchBrowse


  A distributed active NMR sensor array for artifact correction in ultra high field MRI applications

Handwerker, J., Hoffmann, A., Eschelbach, M., Scheffler, K., Ortmanns, M., & Anders, L. (2014). A distributed active NMR sensor array for artifact correction in ultra high field MRI applications. Biomedizinische Technik, 59(Supplement 1), S501.

Item is


show hide
Genre: Meeting Abstract


show Files




Handwerker, J, Author
Hoffmann, A, Author
Eschelbach, M1, 2, Author           
Scheffler, K1, 2, Author           
Ortmanns, M, Author
Anders, L, Author
1Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497796              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794              


Free keywords: -
 Abstract: Introduction
We present a distributed sensor array for the real-time monitoring of magnetic field imperfections in magnetic resoncance imaging (MRI) scanners. These imperfections occur due to hardware limitations originating from non-ideal gradient coils as well as patient motion and lead to artifacts which limit the achievable imaging quality especially for ultra high field scanners. By monitoring these imperfections, the artifacts can be corrected by either a predistortion of the gradient waveforms
or during image reconstruction.
The presented sensor array consists of four active transmit/receive (TX/RX) field probes and signal conditioning electronics on a printed circuit board (PCB). The field probes consist of a glass capillary (din = 800 μm) filled with a liquid NMR sample surrounded by a solenoid TX/RX coil which is connected via a tuning/matching network to a homodyne quadrature transceiver. The proposed system is an extension of the work presented in [1] to an array of sensors which
allows for an artifact correction based on first order spherical harmonic base functions. Furthermore, we use a 19F instead of a 1H NMR sample to reduce coupling between sensor and imaging object and a significantly enhanced the transceiver architecture and layout. The field probes are connected using differential, impedance-matched cables to the signal conditioning board which provides line drivers and anti-aliasing filters and interfaces to a commercial data acquisition system (USB-6366, National Instruments) with 2 MS/s and 16 bit resolution.
The sensor array has an input amplitude ranging from <2.2 μVRMS - 78.4 mVRMS and accepts input frequencies between
175 MHz - 660 MHz, corresponding to field strengths of 4.4 T - 16.4 T for 19F samples. The detector gain can be adjusted between 21 dB and 81 dB with a noise figure of 2.74 dB for quadrature detection. The on-board transmitter generates a peak power of 18.7 dBm, resulting in a 90° pulse time <10 μs. The sensor array was successfully tested in a 9.4 T wholebody scanner and a 11.7 T small animal scanner and achieved a frequency resolution <5 ppb.
Conclusion In contrast to previously published RX-only [2] and TX/RX [3] field probes, the active field probe array presended here eliminates the need for long RF cables inside the scanner due to a local generation of the RF signal required for excitation and downconversion of the NMR signal, reducing the crosstalk with the imaging experiment and therefore improving the accuracy of the recorded data. Currently, we are working on an implementation of the field probe electronics as a custom
designed integrated circuit to further reduce crosstalk and power consumption and improve system performance.


 Dates: 2014-10
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1515/bmt-2014-5008
BibTex Citekey: HandwerkerHESOA2014
 Degree: -


Title: 48th Annual Conference of the German Society for Biomedical Engineering (BMT 2014)
Place of Event: Hannover, Germany
Start-/End Date: 2014-10-08 - 2014-10-10

Legal Case


Project information


Source 1

Title: Biomedizinische Technik
Source Genre: Journal
Publ. Info: Berlin : de Gruyter
Pages: - Volume / Issue: 59 (Supplement 1) Sequence Number: - Start / End Page: S501 Identifier: ISSN: 0013-5585
CoNE: https://pure.mpg.de/cone/journals/resource/0013-5585