Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Fine-Grained Complexity of Analyzing Compressed Data: Quantifying Improvements over Decompress-And-Solve

Abboud, A., Backurs, A., Bringmann, K., & Künnemann, M. (2018). Fine-Grained Complexity of Analyzing Compressed Data: Quantifying Improvements over Decompress-And-Solve. Retrieved from http://arxiv.org/abs/1803.00796.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Forschungspapier

Dateien

einblenden: Dateien
ausblenden: Dateien
:
arXiv:1803.00796.pdf (Preprint), 931KB
Name:
arXiv:1803.00796.pdf
Beschreibung:
File downloaded from arXiv at 2018-05-03 10:43 Presented at FOCS'17. Full version. 63 pages
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Abboud, Amir1, Autor
Backurs, Arturs1, Autor
Bringmann, Karl2, Autor           
Künnemann, Marvin2, Autor           
Affiliations:
1External Organizations, ou_persistent22              
2Algorithms and Complexity, MPI for Informatics, Max Planck Society, ou_24019              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Computer Science, Computational Complexity, cs.CC,Computer Science, Data Structures and Algorithms, cs.DS
 Zusammenfassung: Can we analyze data without decompressing it? As our data keeps growing, understanding the time complexity of problems on compressed inputs, rather than in convenient uncompressed forms, becomes more and more relevant. Suppose we are given a compression of size $n$ of data that originally has size $N$, and we want to solve a problem with time complexity $T(\cdot)$. The naive strategy of "decompress-and-solve" gives time $T(N)$, whereas "the gold standard" is time $T(n)$: to analyze the compression as efficiently as if the original data was small. We restrict our attention to data in the form of a string (text, files, genomes, etc.) and study the most ubiquitous tasks. While the challenge might seem to depend heavily on the specific compression scheme, most methods of practical relevance (Lempel-Ziv-family, dictionary methods, and others) can be unified under the elegant notion of Grammar Compressions. A vast literature, across many disciplines, established this as an influential notion for Algorithm design. We introduce a framework for proving (conditional) lower bounds in this field, allowing us to assess whether decompress-and-solve can be improved, and by how much. Our main results are: - The $O(nN\sqrt{\log{N/n}})$ bound for LCS and the $O(\min\{N \log N, nM\})$ bound for Pattern Matching with Wildcards are optimal up to $N^{o(1)}$ factors, under the Strong Exponential Time Hypothesis. (Here, $M$ denotes the uncompressed length of the compressed pattern.) - Decompress-and-solve is essentially optimal for Context-Free Grammar Parsing and RNA Folding, under the $k$-Clique conjecture. - We give an algorithm showing that decompress-and-solve is not optimal for Disjointness.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2018-03-022018
 Publikationsstatus: Online veröffentlicht
 Seiten: 63 p.
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 1803.00796
URI: http://arxiv.org/abs/1803.00796
BibTex Citekey: Abboud_arXiv1803.00796
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: