日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
ダウンロード電子メール
  From Perception over Anticipation to Manipulation

Li, W. (2018). From Perception over Anticipation to Manipulation. PhD Thesis, Universität des Saarlandes, Saarbrücken.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-0001-4193-F 版のパーマリンク: https://hdl.handle.net/21.11116/0000-000C-71D0-9
資料種別: 学位論文

ファイル

表示: ファイル

関連URL

表示:
非表示:
説明:
-
OA-Status:
Green

作成者

表示:
非表示:
 作成者:
Li, Wenbin1, 2, 著者           
Fritz, Mario1, 学位論文主査           
Leonardis, Aleš3, 監修者
Slussalek, Philip3, 監修者
所属:
1Computer Vision and Multimodal Computing, MPI for Informatics, Max Planck Society, ou_1116547              
2International Max Planck Research School, MPI for Informatics, Max Planck Society, Campus E1 4, 66123 Saarbrücken, DE, ou_1116551              
3External Organizations, ou_persistent22              

内容説明

表示:
非表示:
キーワード: -
 要旨: From autonomous driving cars to surgical robots, robotic system has enjoyed significant growth over the past decade. With the rapid development in robotics alongside the evolution in the related fields, such as computer vision and machine learning, integrating perception, anticipation and manipulation is key to the success of future robotic system. In this thesis, we explore different ways of such integration to extend the capabilities of a robotic system to take on more challenging real world tasks. On anticipation and perception, we address the recognition of ongoing activity from videos. In particular we focus on long-duration and complex activities and hence propose a new challenging dataset to facilitate the work. We introduce hierarchical labels over the activity classes and investigate the temporal accuracy-specificity trade-offs. We propose a new method based on recurrent neural networks that learns to predict over this hierarchy and realize accuracy specificity trade-offs. Our method outperforms several baselines on this new challenge. On manipulation with perception, we propose an efficient framework for programming a robot to use human tools. We first present a novel and compact model for using tools described by a tip model. Then we explore a strategy of utilizing a dual-gripper approach for manipulating tools – motivated by the absence of dexterous hands on widely available general purpose robots. Afterwards, we embed the tool use learning into a hierarchical architecture and evaluate it on a Baxter research robot. Finally, combining perception, anticipation and manipulation, we focus on a block stacking task. First we explore how to guide robot to place a single block into the scene without collapsing the existing structure. We introduce a mechanism to predict physical stability directly from visual input and evaluate it first on a synthetic data and then on real-world block stacking. Further, we introduce the target stacking task where the agent stacks blocks to reproduce a tower shown in an image. To do so, we create a synthetic block stacking environment with physics simulation in which the agent can learn block stacking end-to-end through trial and error, bypassing to explicitly model the corresponding physics knowledge. We propose a goal-parametrized GDQN model to plan with respect to the specific goal. We validate the model on both a navigation task in a classic gridworld environment and the block stacking task.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2018-04-252018-05-032018
 出版の状態: 出版
 ページ: 165 p.
 出版情報: Saarbrücken : Universität des Saarlandes
 目次: -
 査読: -
 識別子(DOI, ISBNなど): BibTex参照ID: Wenbinphd2018
DOI: 10.22028/D291-27156
URN: urn:nbn:de:bsz:291-scidok-ds-271561
その他: hdl:20.500.11880/27026
 学位: 博士号 (PhD)

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物

表示: