English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Color blobs in visual areas V1 and V2 of the Common Marmoset

Valverde, M. (2013). Color blobs in visual areas V1 and V2 of the Common Marmoset. Talk presented at Ernst Strüngmann Institute for Neuroscience. Frankfurt a.M., Germany.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0001-5A33-1 Version Permalink: http://hdl.handle.net/21.11116/0000-0001-5A34-0
Genre: Talk

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Valverde, M1, 2, Author              
Affiliations:
1Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497796              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: Color vision is reserved to only few mammals, such as Old World monkeys and humans. Most Old World monkeys are trichromats. Among them, macaques were shown to exhibit functional domains of color-selectivity, in areas V1 and V2 of the visual cortex. Such color domains have not yet been shown in New World monkeys. In marmosets a sex-linked dichotomy results in dichromatic and trichromatic genotypes, rendering most male marmosets color-blind. Here we used trichromatic female marmosets to examine the intrinsic signal response in V1 and V2 to chromatic and achromatic stimuli, using optical imaging. In order to activate the visual subsystems individually, we used spatially homogeneous isoluminant color opponent (red/green, blue/yellow) and hue versus achromatic flicker (red/gray, green/gray, blue/gray, yellow/gray), as well as achromatic luminance flicker. In contrast to previous optical imaging studies in marmosets, we find clearly segregated color domains, similar to those seen in macaques. Red/green and red/gray flicker were found to be the appropriate stimulus for revealing color domains in single condition maps. Blue/gray and blue/yellow flicker stimuli resulted in faint patch-patterns. A recently described multimodal vessel mapping approach allowed for an accurate alignment of the functional and anatomical datasets. Color domains were tightly colocalized with cytochrome oxidase blobs in V1 and with thin stripes in V2. Thus, our findings are in accord with 2-Deoxy-D-glucose studies performed in V1 of macaques and studies on color representation in V2. Our results suggest a similar organization of early cortical color processing in trichromats of both, Old World and New World monkeys.

Details

show
hide
Language(s):
 Dates: 2013-04-17
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: -
 Degree: -

Event

show
hide
Title: Ernst Strüngmann Institute for Neuroscience
Place of Event: Frankfurt a.M., Germany
Start-/End Date: -
Invited: Yes

Legal Case

show

Project information

show

Source

show