English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Microstructural influence on the cyclic electro-mechanical behaviour of ductile films on polymer substrates

Cordill, M. J., Glushko, O., Kleinbichler, A., Putz, B., Többens, D. M., & Kirchlechner, C. (2017). Microstructural influence on the cyclic electro-mechanical behaviour of ductile films on polymer substrates. Thin Solid Films, 644, 166-172. doi:10.1016/j.tsf.2017.06.067.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0001-6377-A Version Permalink: http://hdl.handle.net/21.11116/0000-0001-6378-9
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Cordill, Megan Jo1, 2, Author              
Glushko, Oleksandr3, 4, Author              
Kleinbichler, Andreas4, 5, Author              
Putz, Barbara4, 5, Author              
Többens, Daniel Maria6, Author              
Kirchlechner, Christoph7, 8, 9, Author              
Affiliations:
1Erich Schmid Institute of Materials Science, Leoben, Austria, ou_persistent22              
2Department Materials Physics, Montanuniversitt Leoben, Jahnstrae 12, A-8700 Leoben, Austria, ou_persistent22              
3Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstrasse 12, Leoben, Austria, ou_persistent22              
4Department of Materials Physics, Montanuniversität Leoben, Jahnstrasse 12, Leoben, Austria, persistent22              
5Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstrasse 12, Leoben, Austria, persistent22              
6Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany, ou_persistent22              
7Department of Materials Physics, University of Leoben, Austrian Academy of Sciences, Austria, ou_persistent22              
8Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Leoben, Austria, ou_persistent22              
9Nano-/ Micromechanics of Materials, Structure and Nano-/ Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863401              

Content

show
hide
Free keywords: THIN CU FILMS; FATIGUE BEHAVIOR; DEFORMATION-BEHAVIOR; YIELD STRENGTH; LENGTH SCALE; IN-SITU; SYNCHROTRON; POLYIMIDE; PASSIVATION; DEPENDENCEMaterials Science; Physics; Thin films; Mechanical properties; Electrical resistivity; Microstructure; Fatigue;
 Abstract: When ductile metal films on compliant polymer substrates are strained in tension catastrophic failure can be suppressed by the substrate, thus allowing for their use in flexible electronics and sensors. However, the charge carrying ductile films must be of an optimum thickness and microstructure for the suppression of cracking to occur. Studies of strained films on polymer substrates tend to have more emphasis on the electrical properties and thickness effects than on the film microstructure or deformation behaviour. To address both the electrical degradation and deformation behaviour of metal films supported by polymer substrates two types of combined electro-mechanical in-situ tests were performed. First, is a combination of in-situ resistance measurements with in-situ confocal scanning laser microscopy imaging of the film surface during cycling. The 4 point probe resistance measurements allow for the examination of the changes in resistance with strain, while the surface imaging permits the visualization of extrusion and crack formation. Second, is the combination of in-situ resistance with in-situ X-ray diffraction measurements of the film stresses during cycling. The combination of electrical measurements, surface imaging, and stress measurements allow for a complete picture of electromechanical behaviour needed for the improvement and future success of flexible electronic devices.

Details

show
hide
Language(s): eng - English
 Dates: 2017-12-31
 Publication Status: Published in print
 Pages: 7
 Publishing info: -
 Table of Contents: -
 Rev. Method: Peer
 Identifiers: ISI: 000416041400024
DOI: 10.1016/j.tsf.2017.06.067
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Thin Solid Films
  Abbreviation : Thin Solid Films
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Lausanne, Switzerland, etc. : Elsevier
Pages: - Volume / Issue: 644 Sequence Number: - Start / End Page: 166 - 172 Identifier: ISSN: 0040-6090
CoNE: /journals/resource/954925449792