Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  MINFLUX monitors rapid molecular jumps with superior spatiotemporal resolution

Eilers, Y., Ta, H., Gwosch, K. C., Balzarotti, F., & Hell, S. W. (2018). MINFLUX monitors rapid molecular jumps with superior spatiotemporal resolution. Proceedings of the National Academy of Sciences of the United States of America, 115(24), 6117-6122. doi:10.1073/pnas.1801672115.

Item is

Basisdaten

einblenden: ausblenden:
Datensatz-Permalink: http://hdl.handle.net/21.11116/0000-0001-6468-A Versions-Permalink: http://hdl.handle.net/21.11116/0000-0001-DAED-F
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
PNAS_115_2018_6117.pdf (beliebiger Volltext), 2MB
 
Datei-Permalink:
-
Name:
PNAS_115_2018_6117.pdf
Beschreibung:
-
Sichtbarkeit:
Eingeschränkt (Max Planck Institute for Medical Research, Heidelberg; )
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
Beschreibung:
-
externe Referenz:
https://doi.org/10.1073/pnas.1801672115 (beliebiger Volltext)
Beschreibung:
-

Urheber

einblenden:
ausblenden:
 Urheber:
Eilers, Yvan, Autor
Ta, Haisen, Autor
Gwosch, Klaus C., Autor
Balzarotti, Francisco, Autor
Hell, Stefan W.1, Autor              
Affiliations:
1Optical Nanoscopy, Max Planck Institute for Medical Research, Max Planck Society, ou_2364730              

Inhalt

einblenden:
ausblenden:
Schlagwörter: single molecule | tracking | localization | MINFLUX
 Zusammenfassung: Compared with localization schemes solely based on evaluating patterns of molecular emission, the recently introduced single-molecule localization concept called MINFLUX and the fluorescence nanoscopies derived from it require up to orders of magnitude fewer emissions to attain single-digit nanometer resolution. Here, we demonstrate that the lower number of required fluorescence photons enables MINFLUX to detect molecular movements of a few nanometers at a temporal sampling of well below 1 millisecond. Using fluorophores attached to thermally fluctuating DNA strands as model systems, we demonstrate that measurement times as short as 400 microseconds suffice to localize fluorescent molecules with ∼2-nm precision. Such performance is out of reach for popular camera-based localization by centroid calculation of emission diffraction patterns. Since theoretical limits have not been reached, our results show that emerging MINFLUX nanoscopy bears great potential for dissecting the motions of individual (macro)molecules at hitherto-unattained combinations of spatial and temporal resolution.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2018-04-302018-05-292018-05-292018-06-12
 Publikationsstatus: Im Druck veröffentlicht
 Seiten: 6
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1073/pnas.1801672115
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Proceedings of the National Academy of Sciences of the United States of America
  Andere : Proceedings of the National Academy of Sciences of the USA
  Andere : Proc. Acad. Sci. USA
  Andere : Proc. Acad. Sci. U.S.A.
  Kurztitel : PNAS
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, D.C. : National Academy of Sciences
Seiten: - Band / Heft: 115 (24) Artikelnummer: - Start- / Endseite: 6117 - 6122 Identifikator: ISSN: 0027-8424
CoNE: /journals/resource/954925427230