English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Surface Plasmon-Mediated Nanoscale Localization of Laser-Driven sub-Terahertz Spin Dynamics in Magnetic Dielectrics

Chekhov, A. L., Stognij, A. I., Satoh, T., Murzina, T. V., Razdolski, I., & Stupakiewicz, A. (2018). Surface Plasmon-Mediated Nanoscale Localization of Laser-Driven sub-Terahertz Spin Dynamics in Magnetic Dielectrics. Nano Letters, 18(5), 2970-2975. doi:10.1021/acs.nanolett.8b00416.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Chekhov, Alexander L.1, 2, 3, Author
Stognij, Alexander I.4, Author
Satoh, Takuya5, Author
Murzina, Tatiana V.1, Author
Razdolski, Ilya3, Author           
Stupakiewicz, Andrzej2, Author
Affiliations:
1Department of Physics, Moscow State University, 119991 Moscow, Russia, ou_persistent22              
2Faculty of Physics, University of Bialystok, 15-245 Bialystok, Poland, ou_persistent22              
3Physical Chemistry, Fritz Haber Institute, Max Planck Society, ou_634546              
4Scientific-Practical Materials Research Centre of the NASB, 220072 Minsk, Belarus, ou_persistent22              
5Department of Physics, Kyushu University, 819-0395 Fukuoka, Japan, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: We report spatial localization of the effective magnetic field generated via the inverse Faraday effect employing surface plasmon polaritons (SPPs) at Au/garnet interface. Analyzing both numerically and analytically the electric field of the SPPs at this interface, we corroborate our study with a proof-of-concept experiment showing efficient SPP-driven excitation of coherent spin precession with 0.41 THz frequency. We argue that the subdiffractional confinement of the SPP electric field enables strong spatial localization of the SPP-mediated excitation of spin dynamics. We demonstrate two orders of magnitude enhancement of the excitation efficiency at the surface plasmon resonance within a 100 nm layer of a dielectric garnet. Our findings broaden the horizons of ultrafast spin-plasmonics and open pathways toward nonthermal opto-magnetic recording on the nanoscale.

Details

show
hide
Language(s): eng - English
 Dates: 2018-04-042018-01-292018-04-112018-05-09
 Publication Status: Issued
 Pages: 6
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1021/acs.nanolett.8b00416
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nano Letters
  Abbreviation : Nano Lett.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, DC : American Chemical Society
Pages: 6 Volume / Issue: 18 (5) Sequence Number: - Start / End Page: 2970 - 2975 Identifier: ISSN: 1530-6984
CoNE: https://pure.mpg.de/cone/journals/resource/110978984570403