Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Gravitational wave detection using laser interferometry beyond the standard quantum limit

Heurs, M. (2018). Gravitational wave detection using laser interferometry beyond the standard quantum limit. Philosophical Transactions of the Royal Society of London - Series A: Mathematical Physical and Engineering Sciences, 376(2120): 20170289. doi:10.1098/rsta.2017.0289.

Item is

Basisdaten

einblenden: ausblenden:
Datensatz-Permalink: http://hdl.handle.net/21.11116/0000-0001-74E1-E Versions-Permalink: http://hdl.handle.net/21.11116/0000-0001-74E2-D
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
PTRS376.pdf (Verlagsversion), 2MB
 
Datei-Permalink:
-
Name:
PTRS376.pdf
Beschreibung:
-
Sichtbarkeit:
Eingeschränkt (Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Potsdam-Golm; )
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Heurs, Michele1, Autor              
Affiliations:
1Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society, ou_24010              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Interferometric gravitational wave detectors (such as advanced LIGO) employ high-power solid-state lasers to maximize their detection sensitivity and hence their reach into the universe. These sophisticated light sources are ultra-stabilized with regard to output power, emission frequency and beam geometry; this is crucial to obtain low detector noise. However, even when all laser noise is reduced as far as technically possible, unavoidable quantum noise of the laser still remains. This is a consequence of the Heisenberg Uncertainty Principle, the basis of quantum mechanics: in this case, it is fundamentally impossible to simultaneously reduce both the phase noise and the amplitude noise of a laser to arbitrarily low levels. This fact manifests in the detector noise budget as two distinct noise sources—photon shot noise and quantum radiation pressure noise—which together form a lower boundary for current-day gravitational wave detector sensitivities, the standard quantum limit of interferometry. To overcome this limit, various techniques are being proposed, among them different uses of non-classical light and alternative interferometer topologies. This article explains how quantum noise enters and manifests in an interferometric gravitational wave detector, and gives an overview of some of the schemes proposed to overcome this seemingly fundamental limitation, all aimed at the goal of higher gravitational wave event detection rates. This article is part of a discussion meeting issue ‘The promises of gravitational-wave astronomy’.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2018
 Publikationsstatus: Im Druck veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1098/rsta.2017.0289
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Philosophical Transactions of the Royal Society of London - Series A: Mathematical Physical and Engineering Sciences
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Royal Society
Seiten: - Band / Heft: 376 (2120) Artikelnummer: 20170289 Start- / Endseite: - Identifikator: ISSN: 1364-503X
CoNE: /journals/resource/954928604111_1