English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  A comparison of optimization algorithms for localized in vivo B0 shimming

Nassirpour, S., Chang, P., Fillmer, A., & Henning, A. (2018). A comparison of optimization algorithms for localized in vivo B0 shimming. Magnetic Resonance in Medicine, 79(2), 1145-1156. doi:10.1002/mrm.26758.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0001-7CFA-B Version Permalink: http://hdl.handle.net/21.11116/0000-0001-8044-1
Genre: Journal Article

Files

show Files

Locators

show
hide
Locator:
Link (Any fulltext)
Description:
-

Creators

show
hide
 Creators:
Nassirpour, S1, 2, Author              
Chang, P1, 2, Author              
Fillmer, A, Author
Henning, A1, 2, Author              
Affiliations:
1Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794              
2Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_2528692              

Content

show
hide
Free keywords: -
 Abstract: PURPOSE: To compare several different optimization algorithms currently used for localized in vivo B0 shimming, and to introduce a novel, fast, and robust constrained regularized algorithm (ConsTru) for this purpose. METHODS: Ten different optimization algorithms (including samples from both generic and dedicated least-squares solvers, and a novel constrained regularized inversion method) were implemented and compared for shimming in five different shimming volumes on 66 in vivo data sets from both 7 T and 9.4 T. The best algorithm was chosen to perform single-voxel spectroscopy at 9.4 T in the frontal cortex of the brain on 10 volunteers. RESULTS: The results of the performance tests proved that the shimming algorithm is prone to unstable solutions if it depends on the value of a starting point, and is not regularized to handle ill-conditioned problems. The ConsTru algorithm proved to be the most robust, fast, and efficient algorithm among all of the chosen algorithms. It enabled acquisition of spectra of reproducible high quality in the frontal cortex at 9.4 T. CONCLUSIONS: For localized in vivo B0 shimming, the use of a dedicated linear least-squares solver instead of a generic nonlinear one is highly recommended. Among all of the linear solvers, the constrained regularized method (ConsTru) was found to be both fast and most robust.

Details

show
hide
Language(s):
 Dates: 2018-02
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1002/mrm.26758
BibTex Citekey: NassirpourCFH2017
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Magnetic Resonance in Medicine
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 79 (2) Sequence Number: - Start / End Page: 1145 - 1156 Identifier: -