English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Multiline balanced SSFP for rapid functional imaging at ultrahigh field

Ehses, P., & Scheffler, K. (2018). Multiline balanced SSFP for rapid functional imaging at ultrahigh field. Magnetic Resonance in Medicine, 79(2), 994-1000. doi:10.1002/mrm.26761.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0001-7D12-F Version Permalink: http://hdl.handle.net/21.11116/0000-0001-7D13-E
Genre: Journal Article

Files

show Files

Locators

show
hide
Locator:
Link (Any fulltext)
Description:
-

Creators

show
hide
 Creators:
Ehses, P1, Author              
Scheffler, K1, 2, Author              
Affiliations:
1Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497796              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: Purpose The goal of this study is to develop and evaluate a multiline balanced steady-state free-precession (bSSFP) sequence for passband functional MRI at ultrahigh field. Methods Passband bSSFP functional MRI experiments using a visual task were performed on a 9.4 T system with echo trains ranging from one up to seven echoes. We analyze the acquisition efficiency, temporal and thermal signal-to-noise ratio, as well as the observed blood oxygen–level-dependent (BOLD) signal changes. Results With increasing repetition time and echo train length, the BOLD-related signal change as well as the thermal and temporal noise were improved. Activation patterns and signal changes were stable and reproducible across subjects. Conclusions We propose a multiline bSSFP for functional BOLD imaging that approaches the speed of echo-planar imaging and that shows an increased BOLD sensitivity compared with single-line bSSFP.

Details

show
hide
Language(s):
 Dates: 2018-02
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: DOI: 10.1002/mrm.26761
BibTex Citekey: EhsesS2017
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Magnetic Resonance in Medicine
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 79 (2) Sequence Number: - Start / End Page: 994 - 1000 Identifier: -