Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Real-Time Nonlinear Model Predictive Control of a Motion Simulator Based on a 8-DOF Serial Robot

Katliar, M., Drop, F., Teufel, H., Diehl, M., & Bülthoff, H. (2018). Real-Time Nonlinear Model Predictive Control of a Motion Simulator Based on a 8-DOF Serial Robot. In 2018 European Control Conference (ECC) (pp. 1529-1535). Piscataway, NJ, USA: IEEE. doi:10.23919/ECC.2018.8550041.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Konferenzbeitrag

Externe Referenzen

einblenden:
ausblenden:
Beschreibung:
-
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Katliar, M1, 2, 3, Autor           
Drop, F1, 2, 3, 4, Autor           
Teufel, H1, 2, 3, 4, Autor           
Diehl, M, Autor
Bülthoff, HH2, 3, 4, Autor           
Affiliations:
1Project group: Motion Perception & Simulation, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_2528705              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794              
3Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497797              
4Project group: Cybernetics Approach to Perception & Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_2528701              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: In this paper we present the implementation of a model predictive controller (MPC) for real-time control of a motion simulator based on a serial robot with 8 degrees of freedom. The goal of the controller is to accurately reproduce six reference signals simultaneously (the accelerations and angular velocities in the body frame of reference) taken from a simulated or real vehicle, by moving the human participant sitting inside the cabin located at the end effector. The controller computes the optimal combined motion of all axes while keeping the axis positions, velocities and accelerations within their limits. The motion of the axes is computed every 12ms based on a prediction horizon consisting of 60 steps, spaced 48ms apart, thus looking ahead 2.88s. To evaluate tracking performance, we measured the acceleration and angular velocity in the cabin using an Inertial Measurement Unit (IMU) for synthetic (doublets and triangle-doublets) and realistic (recorded car and helicopter maneuvers) reference signals. We found that fast-changing acceleration inputs excite the natural frequencies of the system, leading to severe mechanical oscillations. These oscillations can be modelled by a second-order LTI system and mitigated by including this model in the controller. The use of proper algorithms and software allows the computations to be done in real-time.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2018-062018-11
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: BibTex Citekey: KatliarDTDB2018
DOI: 10.23919/ECC.2018.8550041
 Art des Abschluß: -

Veranstaltung

einblenden:
ausblenden:
Titel: 17th European Control Conference (ECC 2018)
Veranstaltungsort: Limassol, Cyprus
Start-/Enddatum: 2018-06-12 - 2018-06-15

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: 2018 European Control Conference (ECC)
Genre der Quelle: Konferenzband
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Piscataway, NJ, USA : IEEE
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: 1529 - 1535 Identifikator: ISBN: 978-3-9524-2699-9