User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse


  Human in-vivo brain magnetic resonance current density imaging (MRCDI)

Göksu, C., Hanson, L., Siebner, H., Ehses, P., Scheffler, K., & Thielscher, A. (2018). Human in-vivo brain magnetic resonance current density imaging (MRCDI). NeuroImage, 171, 26-39. doi:10.1016/j.neuroimage.2017.12.075.

Item is


show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0001-7F78-B Version Permalink: http://hdl.handle.net/21.11116/0000-0001-7F79-A
Genre: Journal Article


show Files




Göksu, C, Author              
Hanson, LG, Author
Siebner, HR, Author
Ehses, P1, 2, Author              
Scheffler, K1, 2, Author              
Thielscher, A1, 2, Author              
1Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497796              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794              


Free keywords: -
 Abstract: Magnetic resonance current density imaging (MRCDI) and MR electrical impedance tomography (MREIT) are two emerging modalities, which combine weak time-varying currents injected via surface electrodes with magnetic resonance imaging (MRI) to acquire information about the current flow and ohmic conductivity distribution at high spatial resolution. The injected current flow creates a magnetic field in the head, and the component of the induced magnetic field ΔBz,c parallel to the main scanner field causes small shifts in the precession frequency of the magnetization. The measured MRI signal is modulated by these shifts, allowing to determine ΔBz,c for the reconstruction of the current flow and ohmic conductivity. Here, we demonstrate reliable ΔBz,c measurements in-vivo in the human brain based on multi-echo spin echo (MESE) and steady-state free precession free induction decay (SSFP-FID) sequences. In a series of experiments, we optimize their robustness for in-vivo measurements while maintaining a good sensitivity to the current-induced fields. We validate both methods by assessing the linearity of the measured ΔBz,c with respect to the current strength. For the more efficient SSFP-FID measurements, we demonstrate a strong influence of magnetic stray fields on the ΔBz,c images, caused by non-ideal paths of the electrode cables, and validate a correction method. Finally, we perform measurements with two different current injection profiles in five subjects. We demonstrate reliable recordings of ΔBz,c fields as weak as 1 nT, caused by currents of 1 mA strength. Comparison of the ΔBz,c measurements with simulated ΔBz,c images based on FEM calculations and individualized head models reveals significant linear correlations in all subjects, but only for the stray field-corrected data. As final step, we reconstruct current density distributions from the measured and simulated ΔBz,c data. Reconstructions from non-corrected ΔBz,c measurements systematically overestimate the current densities. Comparing the current densities reconstructed from corrected ΔBz,c measurements and from simulated ΔBz,c images reveals an average coefficient of determination R2 of 71%. In addition, it shows that the simulations underestimated the current strength on average by 24%. Our results open up the possibility of using MRI to systematically validate and optimize numerical field simulations that play an important role in several neuroscience applications, such as transcranial brain stimulation, and electro- and magnetoencephalography.


 Dates: 2018-05
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: DOI: 10.1016/j.neuroimage.2017.12.075
 Degree: -



Legal Case


Project information


Source 1

Title: NeuroImage
Source Genre: Journal
Publ. Info: -
Pages: - Volume / Issue: 171 Sequence Number: - Start / End Page: 26 - 39 Identifier: -