English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Contrasting dynamics of electrons and protons in the near-Earth plasma sheet during dipolarization

Malykhin, A. Y., Grigorenko, E. E., Kronberg, E. A., Koleva, R., Ganushkina, N. Y., Kozak, L., et al. (2018). Contrasting dynamics of electrons and protons in the near-Earth plasma sheet during dipolarization. Annales Geophysicae, 36, 741-760. doi:10.5194/angeo-36-741-2018.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Malykhin, Andrey Y., Author
Grigorenko, Elena E., Author
Kronberg, Elena A.1, Author           
Koleva, Rositza, Author
Ganushkina, Natalia Y., Author
Kozak, Ludmila, Author
Daly, Patrick W.1, Author           
Affiliations:
1Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society, ou_1832288              

Content

show
hide
Free keywords: -
 MPIS_PROJECTS: Cluster: RAPID
 Abstract: The fortunate location of Cluster and the THEMIS P3 probe in the near-Earth plasma sheet (PS) (at X  ∼  −7–−9 RE) allowed for the multipoint analysis of properties and spectra of electron and proton injections. The injections were observed during dipolarization and substorm current wedge formation associated with braking of multiple bursty bulk flows (BBFs). In the course of dipolarization, a gradual growth of the BZ magnetic field lasted  ∼  13 min and it was comprised of several BZ pulses or dipolarization fronts (DFs) with duration  ≤  1 min. Multipoint observations have shown that the beginning of the increase in suprathermal ( >  50 keV) electron fluxes – the injection boundary – was observed in the PS simultaneously with the dipolarization onset and it propagated dawnward along with the onset-related DF. The subsequent dynamics of the energetic electron flux was similar to the dynamics of the magnetic field during the dipolarization. Namely, a gradual linear growth of the electron flux occurred simultaneously with the gradual growth of the BZ field, and it was comprised of multiple short ( ∼  few minutes) electron injections associated with the BZ pulses. This behavior can be explained by the combined action of local betatron acceleration at the BZ pulses and subsequent gradient drifts of electrons in the flux pile up region through the numerous braking and diverting DFs. The nonadiabatic features occasionally observed in the electron spectra during the injections can be due to the electron interactions with high-frequency electromagnetic or electrostatic fluctuations transiently observed in the course of dipolarization.

On the contrary, proton injections were detected only in the vicinity of the strongest BZ pulses. The front thickness of these pulses was less than a gyroradius of thermal protons that ensured the nonadiabatic acceleration of protons. Indeed, during the injections in the energy spectra of protons the pronounced bulge was clearly observed in a finite energy range  ∼  70–90 keV. This feature can be explained by the nonadiabatic resonant acceleration of protons by the bursts of the dawn–dusk electric field associated with the BZ pulses.

Details

show
hide
Language(s): eng - English
 Dates: 2018-06-202018
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.5194/angeo-36-741-2018
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Annales Geophysicae
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Montrouge Cedex, France : Gauthier-Villars
Pages: - Volume / Issue: 36 Sequence Number: - Start / End Page: 741 - 760 Identifier: ISSN: 0992-7689
CoNE: https://pure.mpg.de/cone/journals/resource/954928606127